Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1996, Number 5, Pages 53–58 (Mi ivm1582)  

On the approximation of solutions of a homogeneous $\pi$-convolution equation with several unknown functions

S. I. Kalinin

Vyatka State Pedagogical University
Received: 26.09.1994
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: S. I. Kalinin, “On the approximation of solutions of a homogeneous $\pi$-convolution equation with several unknown functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 5, 53–58; Russian Math. (Iz. VUZ), 40:5 (1996), 51–56
Citation in format AMSBIB
\Bibitem{Kal96}
\by S.~I.~Kalinin
\paper On the approximation of solutions of a homogeneous $\pi$-convolution equation with several unknown functions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 1996
\issue 5
\pages 53--58
\mathnet{http://mi.mathnet.ru/ivm1582}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1430445}
\zmath{https://zbmath.org/?q=an:0869.45002}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 1996
\vol 40
\issue 5
\pages 51--56
Linking options:
  • https://www.mathnet.ru/eng/ivm1582
  • https://www.mathnet.ru/eng/ivm/y1996/i5/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:146
    Full-text PDF :56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024