Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1997, Number 1, Pages 28–33 (Mi ivm1496)  

On a problem of the optimal reconstruction of integrals in the sense of the principal Cauchy value and of the finite Hadamard value

L. A. Onegov

Kazan State Academy of Architecture and Construction
Received: 20.12.1994
Bibliographic databases:
UDC: 519.644
Language: Russian
Citation: L. A. Onegov, “On a problem of the optimal reconstruction of integrals in the sense of the principal Cauchy value and of the finite Hadamard value”, Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 1, 28–33; Russian Math. (Iz. VUZ), 41:1 (1997), 26–31
Citation in format AMSBIB
\Bibitem{One97}
\by L.~A.~Onegov
\paper On a problem of the optimal reconstruction of integrals in the sense of the principal Cauchy value and of the finite Hadamard value
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 1997
\issue 1
\pages 28--33
\mathnet{http://mi.mathnet.ru/ivm1496}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1480286}
\zmath{https://zbmath.org/?q=an:0909.65029}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 1997
\vol 41
\issue 1
\pages 26--31
Linking options:
  • https://www.mathnet.ru/eng/ivm1496
  • https://www.mathnet.ru/eng/ivm/y1997/i1/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024