|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2009, Number 6, Pages 60–64
(Mi ivm1464)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Brief communications
Mappings connected with the gradient of conformal radius
L. A. Aksent'ev, A. N. Akhmetova Chair of Mathematical Analysis, Kazan State University, Kazan, Russia
Abstract:
In this paper we prove the following conformality criterion for the gradient of conformal radius $\nabla R(D,z)$ of a convex domain $D$: the boundary $\partial D$ has to be a circumference. We calculate coefficients $K(r)$ for $K(r)$-quasiconformal mappings $\nabla R(D(r),z)$, $D(r)\subset D$, $0<r<1$, and complete the results obtained by F. G. Avkhadiev and K.-J. Wirths for the structure of boundary elements of quasiconformal mappings of a domain $D$.
Keywords:
conformal radius, gradient of conformal radius, $K$-quasiconformal mapping, Beltrami equation.
Received: 18.06.2007
Citation:
L. A. Aksent'ev, A. N. Akhmetova, “Mappings connected with the gradient of conformal radius”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 6, 60–64; Russian Math. (Iz. VUZ), 53:6 (2009), 49–52
Linking options:
https://www.mathnet.ru/eng/ivm1464 https://www.mathnet.ru/eng/ivm/y2009/i6/p60
|
Statistics & downloads: |
Abstract page: | 439 | Full-text PDF : | 74 | References: | 62 | First page: | 5 |
|