|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 12, Pages 3–6
(Mi ivm1457)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Uniqueness of a positive radially symmetric solution in a ball to the Dirichlet problem for one nonlinear differential equation of the second order
E. I. Abduragimov Dagestan State University, Makhachkala
Abstract:
In the ball $S=\{x\in R^n:|x|<1\}$ ($n\ge3$) with the boundary $\Gamma$ we consider the Dirichlet problem
\begin{gather*}
\Delta u+|x|^m|u|^p=0, \quad x\in S,
\\
u_\Gamma=0,
\end{gather*}
where $m\ge0$, $p>1$ are constants. We prove that the problem has a unique positive radially symmetric solution.
Keywords:
positive solution, radially symmetric solution, Dirichlet problem, differential equation.
Received: 10.07.2006
Citation:
E. I. Abduragimov, “Uniqueness of a positive radially symmetric solution in a ball to the Dirichlet problem for one nonlinear differential equation of the second order”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 12, 3–6; Russian Math. (Iz. VUZ), 52:12 (2008), 1–3
Linking options:
https://www.mathnet.ru/eng/ivm1457 https://www.mathnet.ru/eng/ivm/y2008/i12/p3
|
Statistics & downloads: |
Abstract page: | 322 | Full-text PDF : | 78 | References: | 47 | First page: | 2 |
|