Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 5, Pages 14–25 (Mi ivm1274)  

This article is cited in 2 scientific papers (total in 2 papers)

Absolute convergence of Fourier–Haar series of functions of two variables

L. D. Gogoladze, V. Sh. Tsagareishvili

Tbilisi State University, Georgia
Full-text PDF (193 kB) Citations (2)
References:
Abstract: It is well-known that if a one-dimensional function is continuously differentiable on $[0,1]$, then its Fourier–Haar series converges absolutely. On the other hand, if a function of two variables has continuous partial derivatives $f_x'$ and $f_y'$ on $T^2$, then its Fourier series does not necessarily absolutely converge with respect to a multiple Haar system (see [1]). In this paper we state sufficient conditions for the absolute convergence of the Fourier–Haar series for two-dimensional continuously differentiable functions
Keywords: absolute convergence, Fourier series, Haar system, functions of two variables, Rademacher system, convergence almost everywhere.
Received: 28.05.2007
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, Volume 52, Issue 5, Pages 9–19
DOI: https://doi.org/10.3103/S1066369X08050022
Bibliographic databases:
UDC: 517.521
Language: Russian
Citation: L. D. Gogoladze, V. Sh. Tsagareishvili, “Absolute convergence of Fourier–Haar series of functions of two variables”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 14–25; Russian Math. (Iz. VUZ), 52:5 (2008), 9–19
Citation in format AMSBIB
\Bibitem{GogTsa08}
\by L.~D.~Gogoladze, V.~Sh.~Tsagareishvili
\paper Absolute convergence of Fourier--Haar series of functions of two variables
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2008
\issue 5
\pages 14--25
\mathnet{http://mi.mathnet.ru/ivm1274}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2445180}
\zmath{https://zbmath.org/?q=an:1157.42308}
\elib{https://elibrary.ru/item.asp?id=11034930}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 5
\pages 9--19
\crossref{https://doi.org/10.3103/S1066369X08050022}
Linking options:
  • https://www.mathnet.ru/eng/ivm1274
  • https://www.mathnet.ru/eng/ivm/y2008/i5/p14
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:440
    Full-text PDF :152
    References:55
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024