Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2009, Number 1, Pages 3–43 (Mi ivm1252)  

This article is cited in 40 scientific papers (total in 40 papers)

Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum

A. V. Arguchintseva, V. A. Dykhtab, V. A. Srochkoa

a Irkutsk State University
b Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: This paper surveys theoretical results on the Pontryagin maximum principle (together with its conversion) and nonlocal optimality conditions based on the use of the Lyapunov-type functions (solutions to the Hamilton–Jacobi inequalities). We pay special attention to the conversion of the maximum principle to a sufficient condition for the global and strong minimum without assumptions of the linear convexity, normality, or controllability. We give the survey of computational methods for solving classical optimal control problems and describe nonstandard procedures of nonlocal improvement of admissible processes in linear and quadratic problems. Furthermore, we cite some recent results on the variational principle of maximum in hyperbolic control systems. This principle is the strongest first order necessary optimality condition; it implies the classical maximum principle as a consequence.
Keywords: maximum principle, Hamilton–Jacobi inequalities, nonlocal computational methods, variational maximum principle.
Received: 21.05.2008
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2009, Volume 53, Issue 1, Pages 1–35
DOI: https://doi.org/10.3103/S1066369X09010010
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. V. Arguchintsev, V. A. Dykhta, V. A. Srochko, “Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 1, 3–43; Russian Math. (Iz. VUZ), 53:1 (2009), 1–35
Citation in format AMSBIB
\Bibitem{ArgDykSro09}
\by A.~V.~Arguchintsev, V.~A.~Dykhta, V.~A.~Srochko
\paper Optimal control: nonlocal conditions, computational methods, and the variational principle of maximum
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2009
\issue 1
\pages 3--43
\mathnet{http://mi.mathnet.ru/ivm1252}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2530588}
\zmath{https://zbmath.org/?q=an:1183.49003}
\elib{https://elibrary.ru/item.asp?id=11642260}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2009
\vol 53
\issue 1
\pages 1--35
\crossref{https://doi.org/10.3103/S1066369X09010010}
Linking options:
  • https://www.mathnet.ru/eng/ivm1252
  • https://www.mathnet.ru/eng/ivm/y2009/i1/p3
  • This publication is cited in the following 40 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:1957
    Full-text PDF :1261
    References:232
    First page:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024