|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 4, Pages 59–65
(Mi ivm1251)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On Lie algebras of affine vector fields of real realizations of holomorphic linear connections
A. Ya. Sultanov, M. V. Morgun Penza State Pedagogical University
Abstract:
We study the properties of real realizations of holomorphic linear connections over associative commutative algebras $\mathbb A_m$ with unity. The following statements are proved.
If a holomorphic linear connection $\nabla$ on $M_n$ over $\mathbb A_m$ $(m\ge2)$ is torsion-free and $R\ne0$, then the dimension over $\mathbb R$ of the Lie algebra of all affine vector fields of the space $(M_{mn}^{\mathbb R},\nabla^{\mathbb R})$ is no greater than $(mn)^2-2mn+5$, where $m=\dim_{\mathbb R}\mathbb A$, $n=\dim_{\mathbb A}M_n$ and $\nabla^{\mathbb R}$ is the real realization of the connection $\nabla$.
Let $\nabla^{\mathbb R}=^1\nabla\times^2\nabla$ be the real realization of a holomorphic linear connection $\nabla$ over the algebra of double numbers. If the Weyl tensor $W=0$ and the components of the curvature tensor $^1R\ne0$, $^2R\ne0$, then the Lie algebra of infinitesimal affine transformations of the space $(M_{2n}^{\mathbb R},\nabla^{\mathbb R})$ is isomorphic to the direct sum of the Lie algebras of infinitesimal affine transformations of the spaces $(^aM_n,\,^a\nabla)$ $(a=1,2)$..
Keywords:
holomorphic linear connection, real realization, Lie algebra of infinitesimal affine transformations.
Received: 28.12.2006
Citation:
A. Ya. Sultanov, M. V. Morgun, “On Lie algebras of affine vector fields of real realizations of holomorphic linear connections”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 4, 59–65; Russian Math. (Iz. VUZ), 52:4 (2008), 53–58
Linking options:
https://www.mathnet.ru/eng/ivm1251 https://www.mathnet.ru/eng/ivm/y2008/i4/p59
|
Statistics & downloads: |
Abstract page: | 312 | Full-text PDF : | 60 | References: | 56 | First page: | 2 |
|