Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 4, Pages 59–65 (Mi ivm1251)  

This article is cited in 1 scientific paper (total in 1 paper)

On Lie algebras of affine vector fields of real realizations of holomorphic linear connections

A. Ya. Sultanov, M. V. Morgun

Penza State Pedagogical University
Full-text PDF (154 kB) Citations (1)
References:
Abstract: We study the properties of real realizations of holomorphic linear connections over associative commutative algebras $\mathbb A_m$ with unity. The following statements are proved.
If a holomorphic linear connection $\nabla$ on $M_n$ over $\mathbb A_m$ $(m\ge2)$ is torsion-free and $R\ne0$, then the dimension over $\mathbb R$ of the Lie algebra of all affine vector fields of the space $(M_{mn}^{\mathbb R},\nabla^{\mathbb R})$ is no greater than $(mn)^2-2mn+5$, where $m=\dim_{\mathbb R}\mathbb A$, $n=\dim_{\mathbb A}M_n$ and $\nabla^{\mathbb R}$ is the real realization of the connection $\nabla$.
Let $\nabla^{\mathbb R}=^1\nabla\times^2\nabla$ be the real realization of a holomorphic linear connection $\nabla$ over the algebra of double numbers. If the Weyl tensor $W=0$ and the components of the curvature tensor $^1R\ne0$, $^2R\ne0$, then the Lie algebra of infinitesimal affine transformations of the space $(M_{2n}^{\mathbb R},\nabla^{\mathbb R})$ is isomorphic to the direct sum of the Lie algebras of infinitesimal affine transformations of the spaces $(^aM_n,\,^a\nabla)$ $(a=1,2)$..
Keywords: holomorphic linear connection, real realization, Lie algebra of infinitesimal affine transformations.
Received: 28.12.2006
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, Volume 52, Issue 4, Pages 53–58
DOI: https://doi.org/10.3103/S1066369X08040063
Bibliographic databases:
UDC: 514.76
Language: Russian
Citation: A. Ya. Sultanov, M. V. Morgun, “On Lie algebras of affine vector fields of real realizations of holomorphic linear connections”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 4, 59–65; Russian Math. (Iz. VUZ), 52:4 (2008), 53–58
Citation in format AMSBIB
\Bibitem{SulMor08}
\by A.~Ya.~Sultanov, M.~V.~Morgun
\paper On Lie algebras of affine vector fields of real realizations of holomorphic linear connections
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2008
\issue 4
\pages 59--65
\mathnet{http://mi.mathnet.ru/ivm1251}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2445173}
\zmath{https://zbmath.org/?q=an:1160.53320}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 4
\pages 53--58
\crossref{https://doi.org/10.3103/S1066369X08040063}
Linking options:
  • https://www.mathnet.ru/eng/ivm1251
  • https://www.mathnet.ru/eng/ivm/y2008/i4/p59
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:312
    Full-text PDF :60
    References:56
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024