Informatsionnye Tekhnologii i Vychslitel'nye Sistemy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Informatsionnye Tekhnologii i Vychslitel'nye Sistemy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2020, Issue 2, Pages 62–74
DOI: https://doi.org/10.14357/20718632200206
(Mi itvs410)
 

This article is cited in 1 scientific paper (total in 1 paper)

IMAGE PROCESSING METHODS

Digital image analysis of optical sections of the cornea for the diagnosis of early keratoconus

V. N. Gridina, A. S. Lebedeva, I. A. Bubnovaab, I. A. Novikovba, O. B. Tarasovaa, B. R. Salema

a Center of Information Technologies in Engineering, Russian Academy of Sciences, Odintsovo, Moscow region, Russia
b Federal State Budgetary Institution of Science «Research Institute of Eye Diseases», Moscow, Russia
Abstract: A set of mathematical techniques and algorithms for the diagnosis of early keratoconus has been developed. The methods are based on the use of original features obtained by recognition of transverse optical sections of the cornea in images done with the camera based on Scheimpflug principle used in the Pentacam device (Oculus, Germany). In particular, a method is proposed for calculating the radius of curvature of the corneal borders, based on their approximation by a regression spline with a penalty function. The use of the stroma brightness in a digital image is proposed as a characterizing feature of the structure — an indicator of the light scattering intensity by the cornea material, or the brightness index of the cornea. A classifier is constructed that ensures the separability of classes 0 (norm) and 1 (early keratoconus) in a two-dimensional feature space: the position of the junction of the regular surface of the cornea and the ectasia zone, the brightness index of the cornea.
Keywords: keratoconus, Scheimpflug camera, Pentacam, corneal curvature, light scattering of corneal matter, support vector machine, classification.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-02049 ìê
Document Type: Article
Language: Russian
Citation: V. N. Gridin, A. S. Lebedev, I. A. Bubnova, I. A. Novikov, O. B. Tarasova, B. R. Salem, “Digital image analysis of optical sections of the cornea for the diagnosis of early keratoconus”, Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2020, no. 2, 62–74
Citation in format AMSBIB
\Bibitem{GriLebBub20}
\by V.~N.~Gridin, A.~S.~Lebedev, I.~A.~Bubnova, I.~A.~Novikov, O.~B.~Tarasova, B.~R.~Salem
\paper Digital image analysis of optical sections of the cornea for the diagnosis of early keratoconus
\jour Informatsionnye Tekhnologii i Vychslitel'nye Sistemy
\yr 2020
\issue 2
\pages 62--74
\mathnet{http://mi.mathnet.ru/itvs410}
\crossref{https://doi.org/10.14357/20718632200206}
Linking options:
  • https://www.mathnet.ru/eng/itvs410
  • https://www.mathnet.ru/eng/itvs/y2020/i2/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Informatsionnye  Tekhnologii i Vychslitel'nye Sistemy
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024