Informatsionnye Tekhnologii i Vychslitel'nye Sistemy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Informatsionnye Tekhnologii i Vychslitel'nye Sistemy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2019, Issue 4, Pages 94–101
DOI: https://doi.org/10.14357/20718632190409
(Mi itvs366)
 

PATTERN RECOGNITION

Achieving statistical dependence of the CNN response on the input data distortion for OCR problem

I. M. Janiszewskia, V. V. Arlazarovbcd, D. G. Sluginba

a Federal Research Center Computer Science and Control of Russian Academy of Sciences, Moscow, Russia
b Smart Engines Service LLC, Moscow, Russia
c IInstitute for Information Transmission Problems of Russian Academy of Sciences, Moscow, Russia
d Moscow Institute of Physics and Technology (State University), Moscow, Russia
Abstract: The paper proposes an approach to training a convolutional neural network using information on the level of distortion of input data. The learning process is modified with an additional layer, which is subsequently deleted, so the architecture of the original network does not change. OCR of data based on the MNIST dataset distorted with Gaussian blur using LeNet5 architecture network is considered. This approach does not have quality loss of the network and has a significant error-free zone in responses on the test data which is absent in the traditional approach to training. The responses are statistically dependent on the level of input image’s distortions and there is a presence of a strong relationship between them.
Keywords: Convolutional neural networks, pattern recognition, machine learning, distortion, Gaussian blur, OCR, MNIST.
Funding agency Grant number
Russian Foundation for Basic Research 17-29-03263_офи_м
17-29-07093_офи_м
The reported study was partially funded by RFBR according to the research projects 17-29-07093 and 17-29-03263.
Bibliographic databases:
Document Type: Article
Language: English
Citation: I. M. Janiszewski, V. V. Arlazarov, D. G. Slugin, “Achieving statistical dependence of the CNN response on the input data distortion for OCR problem”, Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2019, no. 4, 94–101
Citation in format AMSBIB
\Bibitem{JanArlSlu19}
\by I.~M.~Janiszewski, V.~V.~Arlazarov, D.~G.~Slugin
\paper Achieving statistical dependence of the CNN response on the input data distortion for OCR problem
\jour Informatsionnye Tekhnologii i Vychslitel'nye Sistemy
\yr 2019
\issue 4
\pages 94--101
\mathnet{http://mi.mathnet.ru/itvs366}
\crossref{https://doi.org/10.14357/20718632190409}
\elib{https://elibrary.ru/item.asp?id=41720164}
Linking options:
  • https://www.mathnet.ru/eng/itvs366
  • https://www.mathnet.ru/eng/itvs/y2019/i4/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Informatsionnye  Tekhnologii i Vychslitel'nye Sistemy
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024