Informatsionnye Tekhnologii i Vychslitel'nye Sistemy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Informatsionnye Tekhnologii i Vychslitel'nye Sistemy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2019, Issue 1, Pages 87–95
DOI: https://doi.org/10.14357/20718632190108
(Mi itvs337)
 

DATA PROCESSING AND ANALYSIS

Implementation of the module for determining complex load parameters for self-adapting data containers

D.Potapov

Voronezh State University, Voronezh, Russia
Abstract: In applications with a large amount of the static data or data which is using for reading mostly cache applying improves performance greatly. To achieve maximum efficiency in an adaptive data storage implementation cache size can be changed dynamically during execution based on difference between speed of a main container and the cache, and container load. The main parameter of load is a set of requesting data, which in common case can be described as Gaussian distribution. But in a real world the container load is a set of simple loads mostly, because requests to data storage can be made by many applications or different tasks. Thus, parameters of such loads should be identified to achieve cache maximum efficiency. This paper provides implementation of the module for determining complex load parameters for self-adapting data containers results. The choice of EM modification, k-means++ initialization, and module structure brief description are also explained in this work. Clustering quality (for one and many clusters, concepts drift and time frame) and module execution time in this research are analyzed. Based on tests results, it can be said, that this module is good enough for determining complex load parameters and can be used in self-adapting data containers effectively.
Keywords: store the data, cache efficiency, optimal data storage, adaptive data container, container load, gaussian mixture model, clustering, EM, k-means.
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D.Potapov, “Implementation of the module for determining complex load parameters for self-adapting data containers”, Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2019, no. 1, 87–95
Citation in format AMSBIB
\Bibitem{Pot19}
\by D.Potapov
\paper Implementation of the module for determining complex load parameters for self-adapting data containers
\jour Informatsionnye Tekhnologii i Vychslitel'nye Sistemy
\yr 2019
\issue 1
\pages 87--95
\mathnet{http://mi.mathnet.ru/itvs337}
\crossref{https://doi.org/10.14357/20718632190108}
\elib{https://elibrary.ru/item.asp?id=37150503}
Linking options:
  • https://www.mathnet.ru/eng/itvs337
  • https://www.mathnet.ru/eng/itvs/y2019/i1/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Informatsionnye  Tekhnologii i Vychslitel'nye Sistemy
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :137
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024