Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, Volume 23, Issue 3, Pages 339–347
DOI: https://doi.org/10.18500/1816-9791-2023-23-3-339-347
(Mi isu988)
 

Scientific Part
Mathematics

On functions of van der Waerden type

A. I. Rubinstein, D. S. Telyakovskii

National Research Nuclear University MEPhI, 31 Kashirskoe shosse, Moscow 115409, Russia
References:
Abstract: Let $\omega(t)$ be an arbitrary modulus of continuity type function, such that $\omega(t)/t\to+\infty$, as $t\to+0$. We construct a continuous nowhere-differentiable function $V_\omega(x)$, $x\in[0;1]$, that satisfies the following conditions: 1) its modulus of continuity satisfies the estimate $O(\omega(t))$ as $t\to+0$; 2) for some positive $c$ at each point $x_0$ holds $\limsup{|V_\omega(x){-}V_\omega(x_0)|}\big/{\omega(|x{-}x_0|)}>c$ as $x\to x_0$; 3) at each point $x_0$ holds $\liminf{|V_\omega(x){-}V_\omega(x_0)|}\big/{\omega(|x{-}x_0|)}=0$ as $x\to x_0$.
Key words: modulus of continuity, nowhere-differentiable function, van der Waerden type function.
Received: 26.04.2022
Accepted: 04.11.2022
Bibliographic databases:
Document Type: Article
UDC: 517.518.153
Language: Russian
Citation: A. I. Rubinstein, D. S. Telyakovskii, “On functions of van der Waerden type”, Izv. Saratov Univ. Math. Mech. Inform., 23:3 (2023), 339–347
Citation in format AMSBIB
\Bibitem{RubTel23}
\by A.~I.~Rubinstein, D.~S.~Telyakovskii
\paper On functions of van der Waerden type
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2023
\vol 23
\issue 3
\pages 339--347
\mathnet{http://mi.mathnet.ru/isu988}
\crossref{https://doi.org/10.18500/1816-9791-2023-23-3-339-347}
\edn{https://elibrary.ru/BUXAKG}
Linking options:
  • https://www.mathnet.ru/eng/isu988
  • https://www.mathnet.ru/eng/isu/v23/i3/p339
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :41
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024