|
Scientific Part
Mathematics
On functions of van der Waerden type
A. I. Rubinstein, D. S. Telyakovskii National Research Nuclear University MEPhI, 31 Kashirskoe shosse, Moscow 115409, Russia
Abstract:
Let $\omega(t)$ be an arbitrary modulus of continuity type function, such that $\omega(t)/t\to+\infty$, as $t\to+0$. We construct a continuous nowhere-differentiable function $V_\omega(x)$, $x\in[0;1]$, that satisfies the following conditions: 1) its modulus of continuity satisfies the estimate $O(\omega(t))$ as $t\to+0$; 2) for some positive $c$ at each point $x_0$ holds $\limsup{|V_\omega(x){-}V_\omega(x_0)|}\big/{\omega(|x{-}x_0|)}>c$ as $x\to x_0$; 3) at each point $x_0$ holds $\liminf{|V_\omega(x){-}V_\omega(x_0)|}\big/{\omega(|x{-}x_0|)}=0$ as $x\to x_0$.
Key words:
modulus of continuity, nowhere-differentiable function, van der Waerden type function.
Received: 26.04.2022 Accepted: 04.11.2022
Citation:
A. I. Rubinstein, D. S. Telyakovskii, “On functions of van der Waerden type”, Izv. Saratov Univ. Math. Mech. Inform., 23:3 (2023), 339–347
Linking options:
https://www.mathnet.ru/eng/isu988 https://www.mathnet.ru/eng/isu/v23/i3/p339
|
Statistics & downloads: |
Abstract page: | 79 | Full-text PDF : | 41 | References: | 21 |
|