Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, Volume 23, Issue 2, Pages 157–168
DOI: https://doi.org/10.18500/1816-9791-2023-23-2-157-168
(Mi isu975)
 

Scientific Part
Mathematics

Rate of interpolation of analytic functions with regularly decreasing coefficients by simple partial fractions

M. A. Komarov

Vladimir State University, 87 Gorky St., Vladimir 600000, Russia
References:
Abstract: We consider the problems of multiple interpolation of analytic functions $f(z)=f_0+f_1z+\dots$ in the unit disk with node $z=0$ by means of simple partial fractions (logarithmic derivatives of algebraic polynomials) with free poles and with all poles on the circle $|z|=1$. We obtain estimates of the interpolation errors under a condition of the form $|f_{m-1}|<C/\sqrt{m}$, $m=1,2,\dots$. More precisely, we assume that the moduli of the Maclaurin coefficients $f_m$ of a function $f$ do not exceed the corresponding coefficients $\alpha_m$ in the expansion of $a/\sqrt{1-x}$ ($-1<x<1$, $0<a\le a^*\approx 0.34$) in powers of $x$. To prove the estimates, the constructions of Padé simple partial fractions with free poles developed by V. I. and D. Ya. Danchenko (2001), O. N. Kosukhin (2005), V. I. Danchenko and P. V. Chunaev (2011) and the construction of interpolating simple partial fractions with poles on the circle developed by the author (2020) are used. Our theorems complement and improve a number of results of the listed works. Using properties of the sequence $\{\alpha_m\}$ it is possible to prove, in particular, that under the condition $|f_m|\le \alpha_m$ all the poles of the Padé simple partial fraction of a function $f$ lie in the exterior of the unit circle.
Key words: simple partial fraction, rational approximation, multiple interpolation, analytic function, power sum.
Received: 23.03.2022
Accepted: 16.11.2022
Document Type: Article
UDC: 517.538.5
Language: Russian
Citation: M. A. Komarov, “Rate of interpolation of analytic functions with regularly decreasing coefficients by simple partial fractions”, Izv. Saratov Univ. Math. Mech. Inform., 23:2 (2023), 157–168
Citation in format AMSBIB
\Bibitem{Kom23}
\by M.~A.~Komarov
\paper Rate of interpolation of analytic functions with regularly decreasing coefficients by simple partial fractions
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2023
\vol 23
\issue 2
\pages 157--168
\mathnet{http://mi.mathnet.ru/isu975}
\crossref{https://doi.org/10.18500/1816-9791-2023-23-2-157-168}
Linking options:
  • https://www.mathnet.ru/eng/isu975
  • https://www.mathnet.ru/eng/isu/v23/i2/p157
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024