Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, Volume 23, Issue 1, Pages 58–69
DOI: https://doi.org/10.18500/1816-9791-2023-23-1-58-69
(Mi isu968)
 

This article is cited in 1 scientific paper (total in 1 paper)

Scientific Part
Mathematics

The Riemann problem on a ray for generalized analytic functions with a singular line

P. L. Shabalin, R. R. Faizov

Kazan State University of Architecture and Engineering, 1 Zelenaya St., Kazan 420043, Russia
Full-text PDF (394 kB) Citations (1)
References:
Abstract: In this paper, we study an inhomogeneous Riemann boundary value problem with a finite index and a boundary condition on a ray for a generalized Cauchy – Riemann equation with a singular coefficient. For the solution of this problem, we derived a formula for the general solution of the generalized Cauchy – Riemann equation under constraints that led to an infinite index of logarithmic order of the accompanying problem for analytical functions. We have obtained a formula for the general solution of the Riemann problem and conducted a complete study of the existence and the number of solutions of a boundary value problem for generalized analytic functions with a singular line.
Key words: Riemann problem, generalized analytical functions, infinite index, integer functions of refined zero order.
Received: 09.08.2022
Accepted: 26.09.2022
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: P. L. Shabalin, R. R. Faizov, “The Riemann problem on a ray for generalized analytic functions with a singular line”, Izv. Saratov Univ. Math. Mech. Inform., 23:1 (2023), 58–69
Citation in format AMSBIB
\Bibitem{ShaFai23}
\by P.~L.~Shabalin, R.~R.~Faizov
\paper The Riemann problem on a ray for generalized analytic functions with a singular line
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2023
\vol 23
\issue 1
\pages 58--69
\mathnet{http://mi.mathnet.ru/isu968}
\crossref{https://doi.org/10.18500/1816-9791-2023-23-1-58-69}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4553495}
\edn{https://elibrary.ru/UYQLJS}
Linking options:
  • https://www.mathnet.ru/eng/isu968
  • https://www.mathnet.ru/eng/isu/v23/i1/p58
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024