Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, Volume 23, Issue 1, Pages 24–35
DOI: https://doi.org/10.18500/1816-9791-2023-23-1-24-35
(Mi isu965)
 

Scientific Part
Mathematics

Function correction and Lagrange – Jacobi type interpolation

V. V. Novikov

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
References:
Abstract: It is well-known that the Lagrange interpolation based on the Chebyshev nodes may be divergent everywhere (for arbitrary nodes, almost everywhere), like the Fourier series of a summable function. On the other hand, any measurable almost everywhere finite function can be “adjusted” in a set of an arbitrarily small measure such that its Fourier series will be uniformly convergent. The question arises whether the class of continuous functions has a similar property with respect to any interpolation process. In the present paper, we prove that there exists the matrix of nodes $\mathfrak{M}_\gamma$ arbitrarily close to the Jacoby matrix $\mathfrak{M}^{(\alpha,\beta)}$, $\alpha,\beta>-1$ with the following property: any function $f\in{C[-1,1]}$ can be adjusted in a set of an arbitrarily small measure such that interpolation process of adjusted continuous function $g$ based on the nodes $\mathfrak{M}_\gamma$ will be uniformly convergent to $g$ on $[a,b]\subset(-1,1)$.
Key words: Lagrange interpolation, Jacobi orthogonal polynomials, adjustment of functions.
Received: 31.03.2022
Accepted: 01.10.2022
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: V. V. Novikov, “Function correction and Lagrange – Jacobi type interpolation”, Izv. Saratov Univ. Math. Mech. Inform., 23:1 (2023), 24–35
Citation in format AMSBIB
\Bibitem{Nov23}
\by V.~V.~Novikov
\paper Function correction and Lagrange -- Jacobi type interpolation
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2023
\vol 23
\issue 1
\pages 24--35
\mathnet{http://mi.mathnet.ru/isu965}
\crossref{https://doi.org/10.18500/1816-9791-2023-23-1-24-35}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4553492}
\edn{https://elibrary.ru/CQXPUH}
Linking options:
  • https://www.mathnet.ru/eng/isu965
  • https://www.mathnet.ru/eng/isu/v23/i1/p24
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :29
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024