Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, Volume 22, Issue 4, Pages 430–446
DOI: https://doi.org/10.18500/1816-9791-2022-22-4-430-446
(Mi isu954)
 

Scientific Part
Mathematics

Representation of Green's functions of the wave equation on a segment in finite terms

K. Yu. Malyshevab

a Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics (SINP MSU), 1(2) Leninskie gory, GSP-1, Moscow 119991, Russia
b Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia
References:
Abstract: Solutions of initial-boundary value problems on the excitation of oscillations of a finite segment by an instantaneous point sourse are investigated. Solutions to these problems, called Green's functions of the equation of oscillations on a segment, are known in the form of infinite Fourier series or series in terms of Heaviside functions. A. N. Krylov's method of accelerating the convergence of Fourier series for several types of boundary conditions not only accelerates the convergence, but allows one to compose expressions for Green's functions in finite terms. In this paper, finite expressions of Green's functions are given in the form of elementary functions of a real variable. Four different formulations of boundary conditions are considered, including the periodicity conditions.
Key words: equation of oscillations on a segment, Green's function, representation in finite terms, boundary conditions, A. N. Krylov's method.
Received: 17.06.2022
Revised: 05.08.2022
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: K. Yu. Malyshev, “Representation of Green's functions of the wave equation on a segment in finite terms”, Izv. Saratov Univ. Math. Mech. Inform., 22:4 (2022), 430–446
Citation in format AMSBIB
\Bibitem{Mal22}
\by K.~Yu.~Malyshev
\paper Representation of Green's functions of the wave equation on~a~segment in finite terms
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2022
\vol 22
\issue 4
\pages 430--446
\mathnet{http://mi.mathnet.ru/isu954}
\crossref{https://doi.org/10.18500/1816-9791-2022-22-4-430-446}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4539337}
\edn{https://elibrary.ru/UIUDUP}
Linking options:
  • https://www.mathnet.ru/eng/isu954
  • https://www.mathnet.ru/eng/isu/v22/i4/p430
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024