Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, Volume 21, Issue 3, Pages 368–378
DOI: https://doi.org/10.18500/1816-9791-2021-21-3-368-378
(Mi isu902)
 

This article is cited in 4 scientific papers (total in 4 papers)

Scientific Part
Computer Sciences

Construction of 3D solid vertebral models using convolutional neural networks

A. S. Beskrovny, L. V. Bessonov, D. V. Ivanov, V. S. Zolotov, D. A. Sidorenko, I. V. Kirillova, L. Yu. Kossovich

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
Full-text PDF (646 kB) Citations (4)
References:
Abstract: The quality of solving the problem of biomechanical modeling largely depends on the created solid-state model of the biological object under study. Building a model based on computed tomography data for a particular patient is possible both in manual mode (software packages for processing medical images) and using automated tools for building a model (image segmentation), which significantly speeds up the process of creating a solid model, in contrast to the manual mode. The complexity of the automated approach lies in the reconstruction of a segmented image into a solid model suitable for biomechanical modeling. As a rule, automatic segmentation is hampered by the presence of anatomical pathologies, noise, and the presence of implants in the images of a digital study. The article proposes a method for creating a solid model from a point cloud obtained from computed tomography data using convolutional neural networks SpatialConfiguration-Net and U-Net. The results of the implementation were applied in the development of the “Module of Solid Models”, which is included in the prototype of the medical decision support system SmartPlan Ortho 3D, which is being developed at Saratov State University within the framework of the project of the Foundation for Advanced Research. The system is included in the register of Russian software.
Key words: SpatialConfiguration-Net, U-Net, solid model, biomechanical modeling, computed tomography, 3D segmentation.
Funding agency Grant number
Фонд перспективных исследований Российской Федерации 6/130/2018-2021
The work was supported by the Russian Foundation for Advanced Research (agreement No. 6/130/2018-2021 from 01.08.2018).
Received: 15.03.2021
Accepted: 29.04.2021
Bibliographic databases:
Document Type: Article
UDC: 519.688
Language: Russian
Citation: A. S. Beskrovny, L. V. Bessonov, D. V. Ivanov, V. S. Zolotov, D. A. Sidorenko, I. V. Kirillova, L. Yu. Kossovich, “Construction of 3D solid vertebral models using convolutional neural networks”, Izv. Saratov Univ. Math. Mech. Inform., 21:3 (2021), 368–378
Citation in format AMSBIB
\Bibitem{BesBesIva21}
\by A.~S.~Beskrovny, L.~V.~Bessonov, D.~V.~Ivanov, V.~S.~Zolotov, D.~A.~Sidorenko, I.~V.~Kirillova, L.~Yu.~Kossovich
\paper Construction of 3D solid vertebral models using convolutional neural networks
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2021
\vol 21
\issue 3
\pages 368--378
\mathnet{http://mi.mathnet.ru/isu902}
\crossref{https://doi.org/10.18500/1816-9791-2021-21-3-368-378}
Linking options:
  • https://www.mathnet.ru/eng/isu902
  • https://www.mathnet.ru/eng/isu/v21/i3/p368
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :63
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024