Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, Volume 21, Issue 2, Pages 142–150
DOI: https://doi.org/10.18500/1816-9791-2021-21-2-142-150
(Mi isu881)
 

Scientific Part
Mathematics

Quasi-polynomials of Capelli. III

S. Yu. Antonov, A. V. Antonova

Kazan State Power Engineering University, 51 Krasnosel’skaya St., Kazan 420066, Russia
References:
Abstract: In this paper polynomials of Capelli type (double and quasi-polynomials of Capelli) belonging to a free associative algebra $F\{X\cup Y\}$ considering over an arbitrary field $F$ and generated by two disjoint countable sets $X, Y$ are investigated. It is shown that double Capelli's polynomials $C_{4k,\{1\}}$, $C_{4k,\{2\}}$ are consequences of the standard polynomial $S^-_{2k}$. Moreover, it is proved that these polynomials equal to zero both for square and for rectangular matrices of corresponding sizes. In this paper it is also shown that all Capelli's quasi-polynomials of the $(4k+1)$ degree are minimal identities of odd component of $Z_2$-graded matrix algebra $M^{(m, k)}(F)$ for any $F$ and $m\ne k$.
Key words: $T$-ideal, standard polynomial, Capelli polynomial.
Received: 14.02.2020
Revised: 01.06.2020
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: S. Yu. Antonov, A. V. Antonova, “Quasi-polynomials of Capelli. III”, Izv. Saratov Univ. Math. Mech. Inform., 21:2 (2021), 142–150
Citation in format AMSBIB
\Bibitem{AntAnt21}
\by S.~Yu.~Antonov, A.~V.~Antonova
\paper Quasi-polynomials of Capelli.~III
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2021
\vol 21
\issue 2
\pages 142--150
\mathnet{http://mi.mathnet.ru/isu881}
\crossref{https://doi.org/10.18500/1816-9791-2021-21-2-142-150}
\elib{https://elibrary.ru/item.asp?id=45797868}
Linking options:
  • https://www.mathnet.ru/eng/isu881
  • https://www.mathnet.ru/eng/isu/v21/i2/p142
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :53
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024