Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, Volume 20, Issue 4, Pages 444–456
DOI: https://doi.org/10.18500/1816-9791-2020-20-4-444-456
(Mi isu861)
 

This article is cited in 2 scientific papers (total in 2 papers)

Scientific Part
Mathematics

Mixed problem for a homogeneous wave equation with a nonzero initial velocity and a summable potential

V. P. Kurdyumov, A. P. Khromov, V. A. Khalova

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
Full-text PDF (250 kB) Citations (2)
References:
Abstract: For a mixed problem defined by a wave equation with a summable potential equal-order boundary conditions with a derivative and a zero initial position, the properties of the formal solution by the Fourier method are investigated depending on the smoothness of the initial velocity $u_t '(x, 0)=\psi (x)$. The research is based on the idea of A. N. Krylov on accelerating the convergence of Fourier series and on the method of contour integrating the resolvent of the operator of the corresponding spectral problem. The classical solution is obtained for $\psi (x)\in W_p^1$ ($1 <p\le 2$), and it is also shown that if $\psi(x)\in L_p[0,1]$ ($1\le p\le2$), the formal solution is a generalized solution of the mixed problem.
Key words: Fourier method, formal solution, wave equation, resolvent.
Received: 11.06.2019
Accepted: 28.06.2019
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: V. P. Kurdyumov, A. P. Khromov, V. A. Khalova, “Mixed problem for a homogeneous wave equation with a nonzero initial velocity and a summable potential”, Izv. Saratov Univ. Math. Mech. Inform., 20:4 (2020), 444–456
Citation in format AMSBIB
\Bibitem{KurKhrKha20}
\by V.~P.~Kurdyumov, A.~P.~Khromov, V.~A.~Khalova
\paper Mixed problem for a homogeneous wave equation with a nonzero initial velocity and a summable potential
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2020
\vol 20
\issue 4
\pages 444--456
\mathnet{http://mi.mathnet.ru/isu861}
\crossref{https://doi.org/10.18500/1816-9791-2020-20-4-444-456}
Linking options:
  • https://www.mathnet.ru/eng/isu861
  • https://www.mathnet.ru/eng/isu/v20/i4/p444
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :68
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024