Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, Volume 20, Issue 4, Pages 424–433
DOI: https://doi.org/10.18500/1816-9791-2020-20-4-424-433
(Mi isu859)
 

This article is cited in 1 scientific paper (total in 1 paper)

Scientific Part
Mathematics

$\Omega\zeta$-foliated Fitting classes

O. V. Kamozina

Bryansk State Technological University of Engineering, 3 Stanke Dimitrova Ave., Bryansk 241037, Russia
Full-text PDF (206 kB) Citations (1)
References:
Abstract: All groups under consideration are assumed to be finite. For a nonempty subclass of $\Omega$ of the class of all simple groups $\frak I$ and the partition $\zeta =\{\zeta_i\mid i\in I\}$, where $\zeta_i$ is a nonempty subclass of the class $\frak I$, $\frak I =\cup_ {i\in I}\zeta _i$ and $\zeta_i \cap \zeta_j = \varnothing$ for all $i\not = j$, $\Omega\zeta R$-function $f$ and $\Omega\zeta FR$-function $\varphi$ are introduced. The domain of these functions is the set $\Omega\zeta\cup \{\Omega '\}$, where $\Omega\zeta =\{\Omega\cap\zeta_i\mid\Omega\cap\zeta_i\not =\varnothing\}$, $\Omega '=\frak I\setminus\Omega$. The scope of these function values is the set of Fitting classes and the set of nonempty Fitting formations, respectively. The functions $f$ and $\varphi$ are used to determine the $\Omega\zeta$-foliated Fitting class $\frak F=\Omega\zeta R(f,\varphi )=(G: O^\Omega (G)\in f(\Omega' )$ and $G^{\varphi (\Omega\cap\zeta_i )}\in f(\Omega\cap\zeta_i )$ for all $\Omega\cap\zeta_i \in\Omega\zeta (G))$ with $\Omega\zeta$-satellite $f$ and $\Omega\zeta$-direction $\varphi$. The paper gives examples of $\Omega\zeta$-foliated Fitting classes. Two types of $\Omega\zeta$-foliated Fitting classes are defined: $\Omega\zeta$-free and $\Omega\zeta$-canonical Fitting classes. Their directions are indicated by $\varphi_0$ and $\varphi_1$ respectively. It is shown that each non-empty non-identity Fitting class is a $\Omega\zeta$-free Fitting class for some non-empty class $\Omega\subseteq\frak I$ and any partition $\zeta$. A series of properties of $\Omega\zeta$-foliated Fitting classes is obtained. In particular, the definition of internal {$\Omega\zeta$-sa}tellite is given and it is shown that every $\Omega\zeta$-foliated Fitting class has an internal $\Omega\zeta$-satellite. For $\Omega=\frak I$, the concept of a $\zeta$-foliated Fitting class is introduced. The connection conditions between $\Omega\zeta$-foliated and $\zeta$-foliated Fitting classes are shown.
Key words: finite group, Fitting class, $\Omega\zeta$-foliated, $\Omega\zeta$-satellite, $\Omega\zeta$-direction.
Received: 17.11.2019
Accepted: 15.01.2020
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: O. V. Kamozina, “$\Omega\zeta$-foliated Fitting classes”, Izv. Saratov Univ. Math. Mech. Inform., 20:4 (2020), 424–433
Citation in format AMSBIB
\Bibitem{Kam20}
\by O.~V.~Kamozina
\paper $\Omega\zeta$-foliated Fitting classes
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2020
\vol 20
\issue 4
\pages 424--433
\mathnet{http://mi.mathnet.ru/isu859}
\crossref{https://doi.org/10.18500/1816-9791-2020-20-4-424-433}
Linking options:
  • https://www.mathnet.ru/eng/isu859
  • https://www.mathnet.ru/eng/isu/v20/i4/p424
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024