Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, Volume 20, Issue 3, Pages 388–399
DOI: https://doi.org/10.18500/1816-9791-2020-20-3-388-399
(Mi isu855)
 

This article is cited in 2 scientific papers (total in 2 papers)

Scientific Part
Computer Sciences

Heterogeneous queueing system $\mathrm{MR(S)/M(S)/}\infty$ with service parameters depending on the state of the underlying Markov chain

E. P. Polin, S. P. Moiseeva, A. N. Moiseev

Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
Full-text PDF (200 kB) Citations (2)
References:
Abstract: Data streams in information and communication systems include integrated heterogeneous streams, containing voice, text data and video. Since the service of different information units takes different time depending on their format, used protocols and so on, it is proposed to model such data transmission processes using heterogeneous queueing systems with services depending on the parameters of the incoming stream. In the paper, an infinite-server heterogeneous queueing system is considered. Arrivals are modeled as a Markov renewal process (MRP) with two states given by distribution functions of the interval lengths and by a transition probability matrix. The exponential distribution parameter of service time is determined by the state of the underlying Markov chain of the MRP at the moment when a customer arrives and does not change until the service completion. To study the system, the method of characteristic functions is used. Using their properties, analytical expressions are obtained for the initial moments of the first and the second order of the number of customers of each type present in the system in a steady-state regime. To analyze the relationship between the components of the process, a correlation moment is derived.
Key words: infinite-server queueing system, Markov renewal process, method of initial moments.
Received: 08.11.2019
Revised: 30.12.2019
Bibliographic databases:
Document Type: Article
UDC: 501.1
Language: Russian
Citation: E. P. Polin, S. P. Moiseeva, A. N. Moiseev, “Heterogeneous queueing system $\mathrm{MR(S)/M(S)/}\infty$ with service parameters depending on the state of the underlying Markov chain”, Izv. Saratov Univ. Math. Mech. Inform., 20:3 (2020), 388–399
Citation in format AMSBIB
\Bibitem{PolMoiMoi20}
\by E.~P.~Polin, S.~P.~Moiseeva, A.~N.~Moiseev
\paper Heterogeneous queueing system $\mathrm{MR(S)/M(S)/}\infty$ with service parameters depending on the state of the underlying Markov chain
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2020
\vol 20
\issue 3
\pages 388--399
\mathnet{http://mi.mathnet.ru/isu855}
\crossref{https://doi.org/10.18500/1816-9791-2020-20-3-388-399}
Linking options:
  • https://www.mathnet.ru/eng/isu855
  • https://www.mathnet.ru/eng/isu/v20/i3/p388
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024