Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, Volume 20, Issue 3, Pages 280–289
DOI: https://doi.org/10.18500/1816-9791-2020-20-3-280-289
(Mi isu847)
 

Scientific Part
Mathematics

On semigroups of relations with the operation of left and right rectangular products

D. A. Bredikhin

Yuri Gagarin State Technical University of Saratov, 77 Politechnicheskaya St., Saratov 410054, Russia
References:
Abstract: A set of binary relations closed with respect to some collection of operations on relations forms an algebra called an algebra of relations. The class of all algebras (partially ordered algebras) isomorphic to algebras (partially ordered by set-theoretic inclusion $\subseteq$ algebras) of relations with operations from $\Omega$ is denoted by $\mathrm{R}\{\Omega\}$ ($R\{\Omega,\subseteq\}$). An operation on relations is called primitive-positive if it can be defined by a formula of the first-order predicate calculus containing only existential quantifiers and conjunctions in its prenex normal form. We consider algebras of relations with associative primitive-positive operations $\ast$ and $\star$, defined by the following formulas $\rho\ast\sigma=\{(u,v): (\exists s,t,w) (u,s)\in \rho \wedge (t,w)\in \sigma\}$ and $\rho\star\sigma=\{(u,v): (\exists s,t,w) (s,t)\in \rho \wedge (w,v)\in \sigma\}$ respectively. The axiom systems for the classes $\mathrm{R}\{\ast\}$, $\mathrm{R}\{\ast,\subseteq\}$, $\mathrm{R}\{\star\}$, $\mathrm{R}\{\star,\subseteq\}$, and bases of quasi-identities and identities for quasi-varieties and varieties generated by these classes are found.
Key words: algebra of relations, primitive positive operation, identity, variety, quasi-identity, quasi-variety, semigroup, partially ordered semigroup.
Received: 11.06.2019
Revised: 28.06.2019
Bibliographic databases:
Document Type: Article
UDC: 501.1
Language: English
Citation: D. A. Bredikhin, “On semigroups of relations with the operation of left and right rectangular products”, Izv. Saratov Univ. Math. Mech. Inform., 20:3 (2020), 280–289
Citation in format AMSBIB
\Bibitem{Bre20}
\by D.~A.~Bredikhin
\paper On semigroups of relations with the operation of left and right rectangular products
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2020
\vol 20
\issue 3
\pages 280--289
\mathnet{http://mi.mathnet.ru/isu847}
\crossref{https://doi.org/10.18500/1816-9791-2020-20-3-280-289}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000565963700001}
Linking options:
  • https://www.mathnet.ru/eng/isu847
  • https://www.mathnet.ru/eng/isu/v20/i3/p280
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :46
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024