Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, Volume 20, Issue 2, Pages 172–184
DOI: https://doi.org/10.18500/1816-9791-2020-20-2-172-184
(Mi isu845)
 

Scientific Part
Mathematics

On the geometry of three-dimensional pseudo-Riemannian homogeneous spaces. II

N. P. Mozhey

Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki St., Minsk 220013, Belarus
References:
Abstract: The problem of establishing links between the curvature and the topological structure of a manifold is one of the important problems of the geometry. In general, the purpose of the research of manifolds of various types is rather complicated. Therefore, it is natural to consider this problem in a narrower class of pseudo-Riemannian manifolds, for example, in the class of homogeneous pseudo-Riemannian manifolds. This paper is a continuation of the part I. The basic notions, such as an isotropically-faithful pair, a pseudo-Riemannian homogeneous space, an affine connection, curvature and torsion tensors, Levi – Cevita connection, Ricci tensor, Ricci-flat, Einstein, Ricci-parallel, locally symmetric, conformally flat space are defined. In this paper, for all three-dimensional pseudo-Riemannian homogeneous spaces, it is determined under what conditions the space is Ricci-flat, Einstein, Ricci-parallel, locally symmetric or conformally flat. In addition, for all these spaces, Levi – Cevita connections, curvature and torsion tensors, holonomy algebras, scalar curvatures, Ricci tensors are written out in explicit form. The results can find applications in mathematics and physics, since many fundamental problems in these fields are reduced to the study of invariant objects on homogeneous spaces.
Key words: transformation group, pseudo-Riemannian manifold, Ricci tensor, Einstein space, conformally flat space.
Received: 03.11.2018
Accepted: 31.01.2019
Bibliographic databases:
Document Type: Article
UDC: 514.765
Language: Russian
Citation: N. P. Mozhey, “On the geometry of three-dimensional pseudo-Riemannian homogeneous spaces. II”, Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020), 172–184
Citation in format AMSBIB
\Bibitem{Moz20}
\by N.~P.~Mozhey
\paper On the geometry of three-dimensional pseudo-Riemannian homogeneous spaces.~II
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2020
\vol 20
\issue 2
\pages 172--184
\mathnet{http://mi.mathnet.ru/isu845}
\crossref{https://doi.org/10.18500/1816-9791-2020-20-2-172-184}
\elib{https://elibrary.ru/item.asp?id=43021439}
Linking options:
  • https://www.mathnet.ru/eng/isu845
  • https://www.mathnet.ru/eng/isu/v20/i2/p172
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :36
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024