Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, Volume 20, Issue 2, Pages 161–171
DOI: https://doi.org/10.18500/1816-9791-2020-20-2-161-171
(Mi isu836)
 

Scientific Part
Mathematics

On the positive solutions of a model system of nonlinear ordinary differential equations

M. M. Kobilzodaa, A. N. Naimovb

a Tajik National University, 17 Rudaki Ave., Dushanbe 734025, Republic of Tajikistan
b Vologda State University, 15 Lenin St., Vologda 160000, Russia
References:
Abstract: This article investigates the properties of positive solutions of a model system of two nonlinear ordinary differential equations with variable coefficients. We found the new conditions on coefficients for which an arbitrary solution $(x(t), y(t))$ with positive initial values $x(0)$ and $y(0)$ is positive, nonlocally continued and bounded at $t>0$. For this conditions we investigated the question of global stability of positive solutions via method of constructing the guiding function and the method of limit equations. Via the method of constructing the guide function we proved that if the system of equations has a positive constant solution $(x_*, y_*)$, then any positive solution $(x(t), y(t))$ at $t\rightarrow +\infty$ approaches $(x_*, y_*)$. And in the case when the coefficients of the system of equations have finite limits at $t\rightarrow +\infty$ and the limit system of equations has a positive constant solution $(x_{\infty}, y_{\infty})$, via method of limit equations we proved that any positive solution $(x(t), y(t))$ at $t\rightarrow +\infty$ approaches $(x_{\infty}, y_{\infty})$. The results obtained can be generalized for the multidimensional analog of the investigated system of equations.
Key words: a model system of nonlinear ordinary differential equations, positive solution, nonlocal continuation, global stability of positive solutions, method of constructing the guiding function, method of limit equations.
Funding agency Grant number
Russian Foundation for Basic Research 18-47-350001_р_а
19-01-00103_а
This work was supported by the Russian Foundation for Basic Research (projects No. 18-47-350001 р-а, No. 19-01-00103а).
Received: 17.06.2019
Accepted: 30.09.2019
Bibliographic databases:
Document Type: Article
UDC: 517.925.4
Language: Russian
Citation: M. M. Kobilzoda, A. N. Naimov, “On the positive solutions of a model system of nonlinear ordinary differential equations”, Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020), 161–171
Citation in format AMSBIB
\Bibitem{KobNai20}
\by M.~M.~Kobilzoda, A.~N.~Naimov
\paper On the positive solutions of a model system of nonlinear ordinary differential equations
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2020
\vol 20
\issue 2
\pages 161--171
\mathnet{http://mi.mathnet.ru/isu836}
\crossref{https://doi.org/10.18500/1816-9791-2020-20-2-161-171}
Linking options:
  • https://www.mathnet.ru/eng/isu836
  • https://www.mathnet.ru/eng/isu/v20/i2/p161
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:155
    Full-text PDF :50
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024