Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, Volume 20, Issue 1, Pages 105–115
DOI: https://doi.org/10.18500/1816-9791-2020-20-1-105-115
(Mi isu832)
 

This article is cited in 5 scientific papers (total in 5 papers)

Scientific Part
Computer Sciences

Construction of all minimal edge extensions of the graph with isomorphism rejection

M. B. Abrosimova, H. H. K. Sudaniba, A. A. Lobova

a Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
b Ministry of Science and Technology of Iraq, Baghdad, Iraq
Full-text PDF (265 kB) Citations (5)
References:
Abstract: In 1993 Frank Harary and John P. Hayes proposed a graph model for investigating edge fault tolerance of discrete systems. The technical system is mapped to a graph. The elements of the system correspond to the vertices of the graph, and links between the elements correspond to edges or arcs of the graph. Failure of a system element refers to the removal of the corresponding vertex from the system graph along with all its edges. The formalization of a fault-tolerant system implementation is the extension of the graph. The graph $G^*$ is called the edge $k$-extension of the graph $G$ if, after removing any $k$ edges from the graph $G^*$ result graph contains the graph $G$. The edge $k$-extension of a graph $G$ is called minimal if it has the least number of vertices and edges among all edge $k$-extensions of a graph $G$. An algorithm for constructing all nonisomorphic minimal edge $k$-extensions of a given graph using methods of canonical representatives and Read–Faradjev are proposed.
Key words: fault tolerance, edge fault tolerance, graph extension, isomorphism rejection, canonical form, method of generating canonical representatives, Read–Faradjev-type orderly algorithm.
Received: 20.10.2019
Accepted: 02.12.2019
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: M. B. Abrosimov, H. H. K. Sudani, A. A. Lobov, “Construction of all minimal edge extensions of the graph with isomorphism rejection”, Izv. Saratov Univ. Math. Mech. Inform., 20:1 (2020), 105–115
Citation in format AMSBIB
\Bibitem{AbrSudLob20}
\by M.~B.~Abrosimov, H.~H.~K.~Sudani, A.~A.~Lobov
\paper Construction of all minimal edge extensions of the graph with isomorphism rejection
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2020
\vol 20
\issue 1
\pages 105--115
\mathnet{http://mi.mathnet.ru/isu832}
\crossref{https://doi.org/10.18500/1816-9791-2020-20-1-105-115}
Linking options:
  • https://www.mathnet.ru/eng/isu832
  • https://www.mathnet.ru/eng/isu/v20/i1/p105
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024