Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, Volume 20, Issue 1, Pages 4–16
DOI: https://doi.org/10.18500/1816-9791-2020-20-1-4-16
(Mi isu824)
 

This article is cited in 1 scientific paper (total in 1 paper)

Scientific Part
Mathematics

Quasi-polynomials of Capelli. II

S. Yu. Antonov, A. V. Antonova

Kazan State Power Engineering University, 51 Krasnosel'skaya St., Kazan 420066, Russia
Full-text PDF (304 kB) Citations (1)
References:
Abstract: This paper observes the continuation of the study of a certain kind of polynomials of type Capelli (Capelli quasi-polynomials) belonging to the free associative algebra $F\{X\bigcup Y\}$ considered over an arbitrary field $F$ and generated by two disjoint countable sets $X$ and $Y$. It is proved that if $char F=0$ then among the Capelli quasi-polynomials of degree $4k-1$ there are those that are neither consequences of the standard polynomial $S^-_{2k}$ nor identities of the matrix algebra $M_k(F)$. It is shown that if $char F=0$ then only two of the six Capelli quasi-polynomials of degree $4k-1$ are identities of the odd component of the $Z_2$-graded matrix algebra $M_{k+k}(F)$. It is also proved that all Capelli quasi-polynomials of degree $4k+1$ are identities of certain subspaces of the odd component of the $Z_2$-graded matrix algebra $M_{m+k}(F)$ for $m>k$. The conditions under which Capelli quasi-polynomials of degree $4k+1$ being identities of the subspace $M_1^{(m,k)}(F)$ are given.
Key words: $T$-ideal, standard polynomial, Capelli polynomial.
Received: 04.02.2019
Accepted: 03.03.2019
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: S. Yu. Antonov, A. V. Antonova, “Quasi-polynomials of Capelli. II”, Izv. Saratov Univ. Math. Mech. Inform., 20:1 (2020), 4–16
Citation in format AMSBIB
\Bibitem{AntAnt20}
\by S.~Yu.~Antonov, A.~V.~Antonova
\paper Quasi-polynomials of Capelli.~II
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2020
\vol 20
\issue 1
\pages 4--16
\mathnet{http://mi.mathnet.ru/isu824}
\crossref{https://doi.org/10.18500/1816-9791-2020-20-1-4-16}
Linking options:
  • https://www.mathnet.ru/eng/isu824
  • https://www.mathnet.ru/eng/isu/v20/i1/p4
    Cycle of papers
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :32
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024