Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2018, Volume 18, Issue 2, Pages 128–143
DOI: https://doi.org/10.18500/1816-9791-2018-18-2-128-143
(Mi isu750)
 

Scientific Part
Mathematics

To Chang theorem. III

S. Yu. Antonov, A. V. Antonova

Kazan State Power Engineering University, 51, Krasnoselskaya Str., Kazan, 420066, Russia
References:
Abstract: Various multilinear polynomials of Capelli type belonging to a free associative algebra $F\{X\cup Y\}$ over an arbitrary field $F$ generated by a countable set $X \cup Y$ are considered. The formulas expressing coefficients of polynomial Chang ${\mathcal R}(\bar x, \bar y \vert \bar w)$ are found. It is proved that if the characteristic of field $F$ is not equal two then polynomial ${\mathcal R}(\bar x, \bar y \vert \bar w)$ may be represented by different ways in the form of sum of two consequences of standard polynomial $S^-(\bar x)$. The decomposition of Chang polynomial ${\mathcal H}(\bar x, \bar y \vert \bar w)$ different from already known is given. Besides, the connection between polynomials ${\mathcal R}(\bar x, \bar y \vert \bar w)$ and ${\mathcal H}(\bar x, \bar y \vert \bar w)$ is found. Some consequences of standard polynomial being of great interest for algebras with polynomial identities are obtained. In particular, a new identity of minimal degree for odd component of $Z_2$-graded matrix algebra $M^{(m,m)}(F)$ is given.
Key words: $T$-ideal, standard polynomial, Capelli polynomial.
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: S. Yu. Antonov, A. V. Antonova, “To Chang theorem. III”, Izv. Saratov Univ. Math. Mech. Inform., 18:2 (2018), 128–143
Citation in format AMSBIB
\Bibitem{AntAnt18}
\by S.~Yu.~Antonov, A.~V.~Antonova
\paper To Chang theorem. III
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2018
\vol 18
\issue 2
\pages 128--143
\mathnet{http://mi.mathnet.ru/isu750}
\crossref{https://doi.org/10.18500/1816-9791-2018-18-2-128-143}
\elib{https://elibrary.ru/item.asp?id=35085044}
Linking options:
  • https://www.mathnet.ru/eng/isu750
  • https://www.mathnet.ru/eng/isu/v18/i2/p128
    Cycle of papers
    • To Chang theorem
      S. Yu. Antonov, A. V. Antonova
      Izv. Saratov Univ. Math. Mech. Inform., 2015, 15:3, 247–251
    • To Chang theorem. II
      S. Yu. Antonov, A. V. Antonova
      Izv. Saratov Univ. Math. Mech. Inform., 2017, 17:2, 127–137
    • To Chang theorem. III
      S. Yu. Antonov, A. V. Antonova
      Izv. Saratov Univ. Math. Mech. Inform., 2018, 18:2, 128–143
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :64
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024