Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2018, Volume 18, Issue 1, Pages 101–124
DOI: https://doi.org/10.18500/1816-9791-2018-18-1-101-124
(Mi isu748)
 

Scientific Part
Computer Sciences

Empirical analysis of algorithms for solving the index tracking problem

A. R. Faizliev, A. A. Khomchenko, S. P. Sidorov

Saratov State University, 83, Astrakhanskaya Str., Saratov, Russia, 410012
References:
Abstract: Index tracking is a passive financial strategy that tries to replicate the performance of a given index or benchmark. The aim of investor is to find the weights of assets in her/his portfolio that minimize the tracking error, i.e. difference between the performance of the index and the portfolio. The paper considers the index tracking problem with cardinality constraint, i.e. the limit on the number of assets in the portfolio with non-zero weights. Index tracking problem with cardinality constraint is NP-hard problem and it usually requires the development of heuristic algorithms such as genetic algorithms and differential evolution algorithm. In this paper we will examine different algorithms for solving the problem in $l_2$-norm, including greedy algorithm, differential evolution algorithm and LASSO-type algorithm. In our empirical analysis we use publicly available data relating to three major market indices (the Hang Seng (Hong Kong), S&P 100 (USA) and the Nikkei 225 (Japan). To compare the three approaches (the greedy and the LASSO-type algorithms, the greedy and the differential evolution algorithms) to the index tracking problem, we use both a moving time window procedure and stochastic dominance principle. Moreover, we carried out the comparison using both for in-sample and out-of-sample tracking error analysis.
Key words: index tracking, portfolio optimization, greedy algorithm, LASSO-type regression, differential evolution algorithm.
Funding agency Grant number
Russian Foundation for Basic Research 18-37-00060
Acknowledgements: This work was supported by the Russian Foundation for Basic Research (projects no. 18-37-00060).
Bibliographic databases:
Document Type: Article
UDC: 519.68
Language: Russian
Citation: A. R. Faizliev, A. A. Khomchenko, S. P. Sidorov, “Empirical analysis of algorithms for solving the index tracking problem”, Izv. Saratov Univ. Math. Mech. Inform., 18:1 (2018), 101–124
Citation in format AMSBIB
\Bibitem{FaiKhoSid18}
\by A.~R.~Faizliev, A.~A.~Khomchenko, S.~P.~Sidorov
\paper Empirical analysis of algorithms for solving the index tracking problem
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2018
\vol 18
\issue 1
\pages 101--124
\mathnet{http://mi.mathnet.ru/isu748}
\crossref{https://doi.org/10.18500/1816-9791-2018-18-1-101-124}
\elib{https://elibrary.ru/item.asp?id=35647734}
Linking options:
  • https://www.mathnet.ru/eng/isu748
  • https://www.mathnet.ru/eng/isu/v18/i1/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :170
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024