Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2018, Volume 18, Issue 1, Pages 40–48
DOI: https://doi.org/10.18500/1816-9791-2018-18-1-40-48
(Mi isu743)
 

This article is cited in 6 scientific papers (total in 6 papers)

Scientific Part
Mathematics

Asymptotic formulae for weight numbers of the Sturm–Liouville boundary problem on a star-shaped graph

M. A. Kuznetsova

Saratov State University, 83, Astrakhanskaya Str., 410012, Saratov, Russia
Full-text PDF (171 kB) Citations (6)
References:
Abstract: In this article the Sturm–Liouville boundary value problem on the graph $\Gamma$ of a special structure is considered. The graph $\Gamma$ has $m$ edges, joined at one common vertex, and $m$ vertices of degree $1$. The boundary value problem is set by the Sturm–Liouville differential expression with real-valued potentials, the Dirichlet boundary conditions, and the standard matching conditions. This problem has a countable set of eigenvalues. We consider the so-called weight numbers, being the residues of the diagonal elements of the Weyl matrix in the eigenvalues. These elements are meromorphic functions with simple poles which can be only the eigenvalues. We note that the considered weight numbers generalize the weight numbers of Sturm–Liouville operators on a finite interval, equal to the reciprocals to the squared norms of eigenfunctions. These numbers together with the eigenvalues play a role of spectral data for unique reconstruction of operators.We obtain asymptotic formulae for the weight numbers using the contour integration, and in the case of the asymptotically close eigenvalues the formulae are got for the sums. The formulae can be used for the analysis of inverse spectral problems on the graphs.
Key words: Sturm–Liouville boundary problem, asymptotic formulae, weight numbers, star-shaped graph.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-04864_а
17-51-53180_ГФЕН_а
Ministry of Education and Science of the Russian Federation 1.1660.2017/ПЧ
This work was supported in part by the Russian Foundation for Basic Research (projects nos. 15-01-04864, 17-51-53180) and by the Ministry of Education and Science of the Russian Federation (project no. 1.1660.2017/PCh).
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: English
Citation: M. A. Kuznetsova, “Asymptotic formulae for weight numbers of the Sturm–Liouville boundary problem on a star-shaped graph”, Izv. Saratov Univ. Math. Mech. Inform., 18:1 (2018), 40–48
Citation in format AMSBIB
\Bibitem{Kuz18}
\by M.~A.~Kuznetsova
\paper Asymptotic formulae for weight numbers of the Sturm--Liouville boundary problem on a star-shaped graph
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2018
\vol 18
\issue 1
\pages 40--48
\mathnet{http://mi.mathnet.ru/isu743}
\crossref{https://doi.org/10.18500/1816-9791-2018-18-1-40-48}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000433620000004}
\elib{https://elibrary.ru/item.asp?id=35647729}
Linking options:
  • https://www.mathnet.ru/eng/isu743
  • https://www.mathnet.ru/eng/isu/v18/i1/p40
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024