Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2018, Volume 18, Issue 1, Pages 17–24
DOI: https://doi.org/10.18500/1816-9791-2018-18-1-17-24
(Mi isu741)
 

This article is cited in 2 scientific papers (total in 2 papers)

Scientific Part
Mathematics

Recurrence relations for polynomials orthonormal on Sobolev, generated by Laguerre polynomials

R. M. Gadzhimirzaev

Dagestan Scientific Center, Russian Academy of Sciences, 45, Gadjieva Str., Makhachkala, Russia, 367025
Full-text PDF (154 kB) Citations (2)
References:
Abstract: In this paper we consider the system of polynomials $l_{r,n}^{\alpha}(x)$ ($r$ — natural number, $n=0, 1, \ldots$), orthonormal with respect to the Sobolev inner product (Sobolev orthonormal polynomials) of the following type $\langle f,g\rangle=\sum_{\nu=0}^{r-1}f^{(\nu)}(0)g^{(\nu)}(0)+\int_{0}^{\infty} f^{(r)}(t)g^{(r)}(t)\rho(t)\,dt$ and generated by the classical orthonormal Laguerre polynomials. Recurrence relations are obtained for the system of Sobolev orthonormal polynomials, which can be used for studying various properties of these polynomials and calculate their values for any $x$ and $n$. Moreover, we consider the system of the Laguerre functions $\mu_{n}^{\alpha}(x) = \sqrt{\rho(x)}l_{n}^{\alpha}(x)$, which generates a system of functions $\mu_{r, n}^{\alpha}(x)$ orthonormal with respect to the inner product of the following form $\langle \mu_{r,n}^\alpha,\mu_{r,k}^\alpha\rangle= \sum_{\nu=0}^{r-1}(\mu_{r,n}^\alpha(x))^{(\nu)}|_{x=0} (\mu_{r,k}^\alpha(x))^{(\nu)}|_{x=0}+ \int_{0}^{\infty} (\mu_{r,n}^\alpha(x))^{(r)}(\mu_{r,k}^\alpha(x))^{(r)}\,dx.$ For the generated system of functions $\mu_{r,n}^{\alpha}(x)$, recurrence relations for $\alpha=0$ are also obtained.
Key words: Laguerre polynomials, Sobolev-type inner product, Sobolev orthonormal polynomials, Laguerre functions.
Bibliographic databases:
Document Type: Article
UDC: 517.15
Language: Russian
Citation: R. M. Gadzhimirzaev, “Recurrence relations for polynomials orthonormal on Sobolev, generated by Laguerre polynomials”, Izv. Saratov Univ. Math. Mech. Inform., 18:1 (2018), 17–24
Citation in format AMSBIB
\Bibitem{Gad18}
\by R.~M.~Gadzhimirzaev
\paper Recurrence relations for polynomials orthonormal on Sobolev, generated by Laguerre polynomials
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2018
\vol 18
\issue 1
\pages 17--24
\mathnet{http://mi.mathnet.ru/isu741}
\crossref{https://doi.org/10.18500/1816-9791-2018-18-1-17-24}
\elib{https://elibrary.ru/item.asp?id=35647727}
Linking options:
  • https://www.mathnet.ru/eng/isu741
  • https://www.mathnet.ru/eng/isu/v18/i1/p17
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:401
    Full-text PDF :207
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024