Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2017, Volume 17, Issue 4, Pages 394–401
DOI: https://doi.org/10.18500/1816-9791-2017-17-4-394-401
(Mi isu733)
 

Scientific Part
Mathematics

Adjustment of functions and Lagrange interpolation based on the nodes close to the Legendre nodes

V. V. Novikov

Saratov State University, 83, Astrakhanskaya Str., Saratov, Russia, 410012
References:
Abstract: It is well known that the Lagrange interpolation of a continuous function based on the Chebyshev nodes may be divergent everywhere (for arbitrary nodes, almost everywhere) like the Fourier series of a summable function. On the other hand any measurable almost everywhere finite function can be “adjusted” in a set of arbitrarily small measure such that its Fourier series will be uniformly convergent. The question arises: does the class of continuous functions have a similar property with respect to any interpolation process? In the present paper we prove that there exists a matrix of nodes $\mathfrak{M}_\gamma$ arbitrarily close to the Legendre matrix with the following property: any function $f\in{C[-1,1]}$ can be adjusted in a set of arbitrarily small measure such that the interpolation process of adjusted continuous function $g$ based on the nodes $\mathfrak{M}_\gamma$ will be uniformly convergent to $g$ on $[a,b]\subset(-1,1)$.
Key words: Lagrange interpolation, Legendre orthogonal polynomials, adjustment of functions.
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: V. V. Novikov, “Adjustment of functions and Lagrange interpolation based on the nodes close to the Legendre nodes”, Izv. Saratov Univ. Math. Mech. Inform., 17:4 (2017), 394–401
Citation in format AMSBIB
\Bibitem{Nov17}
\by V.~V.~Novikov
\paper Adjustment of functions and Lagrange interpolation based on the nodes close to the Legendre nodes
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2017
\vol 17
\issue 4
\pages 394--401
\mathnet{http://mi.mathnet.ru/isu733}
\crossref{https://doi.org/10.18500/1816-9791-2017-17-4-394-401}
\elib{https://elibrary.ru/item.asp?id=30771349}
Linking options:
  • https://www.mathnet.ru/eng/isu733
  • https://www.mathnet.ru/eng/isu/v17/i4/p394
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:278
    Full-text PDF :67
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024