Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2017, Volume 17, Issue 3, Pages 313–330
DOI: https://doi.org/10.18500/1816-9791-2017-17-3-313-330
(Mi isu727)
 

This article is cited in 1 scientific paper (total in 1 paper)

Scientific Part
Mathematics

Equiconvergence theorem for integral operator with involution

E. V. Nazarovaa, V. A. Khalovab

a Moscow Bank College of the Central Bank of the Russian Federation, 23, Signalny Pr., Moscow, Russia, 127273
b Saratov State University, 83, Astrakhanskaya Str., Saratov, Russia, 410012
Full-text PDF (250 kB) Citations (1)
References:
Abstract: In the paper, the integral operator with kernel having discontinuities of the first kind at the lines $t=x$ and $t=1-x$ is studied. The equiconvergence of Fourier expansions for arbitrary integrable function $f(x)$ in eigenfunctions and associated functions of the considered operator and expansions of linear combination of functions $f(x)$ and $f(1-x)$ in trigonometric system is proved. The equiconvergence is studied using the method based on integration of the resolvent using spectral value. Methods, developed by A. P. Khromov in the study of spectral theory of integral operators are widely used. Recently, these methods are of use in studies of boundary value problems of mathematical physics using Fourier method with minimal smoothness conditions for the initial data.
Key words: equiconvergence theorem, integral operator, resolvent, eigenfunctions, involution.
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: E. V. Nazarova, V. A. Khalova, “Equiconvergence theorem for integral operator with involution”, Izv. Saratov Univ. Math. Mech. Inform., 17:3 (2017), 313–330
Citation in format AMSBIB
\Bibitem{NazKha17}
\by E.~V.~Nazarova, V.~A.~Khalova
\paper Equiconvergence theorem for integral operator with involution
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2017
\vol 17
\issue 3
\pages 313--330
\mathnet{http://mi.mathnet.ru/isu727}
\crossref{https://doi.org/10.18500/1816-9791-2017-17-3-313-330}
\elib{https://elibrary.ru/item.asp?id=29897304}
Linking options:
  • https://www.mathnet.ru/eng/isu727
  • https://www.mathnet.ru/eng/isu/v17/i3/p313
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :77
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024