Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2017, Volume 17, Issue 3, Pages 267–275
DOI: https://doi.org/10.18500/1816-9791-2017-17-3-267-275
(Mi isu722)
 

Scientific Part
Mathematics

On an inner estimate of a convex body by the Lebesgue set of convex differentiable function

S. I. Dudov, V. V. Abramova

Saratov State University, 83, Astrakhanskaya Str., Saratov, Russia, 410012
References:
Abstract: A finite-dimentional problem of embedding the largest by the inclusion of lower Lebesgue set of given convex function $f(x)$ in a given convex body $D \subset {\mathbb{R}^p}$ is considered. This problem is the generalization of the problem of inscribed ball (function $f(x)$ is some norm, and the Lebesgue sets are the corresponding balls). The function $f(x)$ must be differentiable on ${\mathbb{R}^p}$ possibly expending the point $0_p$ and $0_p$ is the uniqueness point of minimum. Mathematical formalization of this problem is proposed in the form of finding maximin of a function of the difference of arguments. It is proved that the objective function of this maximin problem is Lipschitzian on all space ${\mathbb{R}^p}$ and quasiconcave on the set $D$. Also, superdifferentiability (in the sense of V. F. Demyanov–A. M. Rubinov) of objective function on the interior of $D$ is established and the corresponding formula of superdifferential is derived. The necessary and sufficient solution conditions and the condition for uniqueness of solution are obtained on the basis of this formula of superdifferential.
Key words: convex body, inner estimate, minimax, supperdifferential, quasiconcave function.
Bibliographic databases:
Document Type: Article
UDC: 519.853
Language: Russian
Citation: S. I. Dudov, V. V. Abramova, “On an inner estimate of a convex body by the Lebesgue set of convex differentiable function”, Izv. Saratov Univ. Math. Mech. Inform., 17:3 (2017), 267–275
Citation in format AMSBIB
\Bibitem{DudAbr17}
\by S.~I.~Dudov, V.~V.~Abramova
\paper On an inner estimate of a convex body by the Lebesgue set of convex differentiable function
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2017
\vol 17
\issue 3
\pages 267--275
\mathnet{http://mi.mathnet.ru/isu722}
\crossref{https://doi.org/10.18500/1816-9791-2017-17-3-267-275}
\elib{https://elibrary.ru/item.asp?id=29897299}
Linking options:
  • https://www.mathnet.ru/eng/isu722
  • https://www.mathnet.ru/eng/isu/v17/i3/p267
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :72
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024