Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2017, Volume 17, Issue 3, Pages 244–254
DOI: https://doi.org/10.18500/1816-9791-2017-17-3-244-254
(Mi isu720)
 

This article is cited in 2 scientific papers (total in 2 papers)

Scientific Part
Mathematics

Well-posedness of the Dirichlet problem for one class of degenerate multi-dimensional hyperbolic-parabolic equations

S. A. Aldashev

Abai Kazakh National Pedagogical University, 86, Tole Be Str., Almaty, Kazakhstan, 480012
Full-text PDF (254 kB) Citations (2)
References:
Abstract: It has been shown by Hadamard that one of the fundamental problems of mathematical physics, the analysis of the behavior of oscillating string is an ill-posed problem when the boundary-value conditions are imposed on the entire boudary of the domain. As noted by A. V. Bitsadze and A. M. Nakhushev, the Dirichlet problem is ill-posed not only for the wave equation but for hyperbolic PDEs in general. This author has earlier studied the Dirichlet problem for multi-dimensional hyperbolic PDEs, where he has shown that the well-posedness of this problem crucially depends on the height of the analyzed cylindric domain. This paper, using the method developed in the authors previous papers, shows the unique solvability (and obtains an explicit form of the classical solution) of the Dirichlet problem in the cylindric domain for one class of degenerate multi-dimensional hyperbolic-parabolic equations. We also obtain a criterion for the uniqueness of the solution.
Key words: well-posedness, Dirichlet problems, degenerate equations, criterion, Bessel function.
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: S. A. Aldashev, “Well-posedness of the Dirichlet problem for one class of degenerate multi-dimensional hyperbolic-parabolic equations”, Izv. Saratov Univ. Math. Mech. Inform., 17:3 (2017), 244–254
Citation in format AMSBIB
\Bibitem{Ald17}
\by S.~A.~Aldashev
\paper Well-posedness of the Dirichlet problem for one class of degenerate multi-dimensional hyperbolic-parabolic equations
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2017
\vol 17
\issue 3
\pages 244--254
\mathnet{http://mi.mathnet.ru/isu720}
\crossref{https://doi.org/10.18500/1816-9791-2017-17-3-244-254}
\elib{https://elibrary.ru/item.asp?id=29897297}
Linking options:
  • https://www.mathnet.ru/eng/isu720
  • https://www.mathnet.ru/eng/isu/v17/i3/p244
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024