Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2017, Volume 17, Issue 2, Pages 138–147
DOI: https://doi.org/10.18500/1816-9791-2017-17-2-138-147
(Mi isu711)
 

This article is cited in 4 scientific papers (total in 4 papers)

Scientific Part
Mathematics

Extended structures on codistributions of contact metric manifolds

S. V. Galaev

Saratov State University, 83, Astrakhanskaya str., Saratov, Russia, 410012
Full-text PDF (259 kB) Citations (4)
References:
Abstract: In the paper, the notion of an $AP$-manifold is introduced. Such a manifold is an almost contact metric manifold that is locally equivalent to the direct product of a contact metric manifold and an Hermitian manifold. A normal $AP$-manifold with a closed fundamental form is a quasi-Sasakian manifold. A quasi-Sasakian AP-manifold is called in the paper a special quasi-Sasakian manifold ($\mathrm{SQS}$-manifold). A $\mathrm{SQS}$-manifold is locally equivalent to the product of a Sasakian manifold and a Kählerian manifold. As a subsidiary result, a proposition is proved stating that a contact metric space with a zero curvature distribution is a K–contact metric space. The codistribution $D^*$ of a contact metric structure $(M, \vec{\xi}, \eta, \varphi, g, D)$ is defined as the subbundle of the cotangent bundle $T^*M$, consisting of all 1-forms annihilating the structure vector $\vec{\xi}$. On the codistribution $D^*$, the extended almost contact metric structure $(D^*,\vec{u}=\partial_n,\mu=\eta\circ \pi_{*},J,G,\tilde{D})$ is defined. Structural equations are introduced. These equations were used to prove the statement that the extended almost contact metric structure defines a structure of an $AP$-manifold if and only if the Schouten tensor of the contact metric manifold $M$ is equal to zero. Finally we prove the theorem stating that the extended almost contact metric structure is a SQS-structure if and only if the initial manifold is a Sasakian manifold with a zero curvature distribution.
Key words: quasi-Sasakian manifold, interior connection, associated connection, Schouten curvature tensor, distribution of zero curvature.
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: S. V. Galaev, “Extended structures on codistributions of contact metric manifolds”, Izv. Saratov Univ. Math. Mech. Inform., 17:2 (2017), 138–147
Citation in format AMSBIB
\Bibitem{Gal17}
\by S.~V.~Galaev
\paper Extended structures on codistributions of contact metric manifolds
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2017
\vol 17
\issue 2
\pages 138--147
\mathnet{http://mi.mathnet.ru/isu711}
\crossref{https://doi.org/10.18500/1816-9791-2017-17-2-138-147}
\elib{https://elibrary.ru/item.asp?id=29924693}
Linking options:
  • https://www.mathnet.ru/eng/isu711
  • https://www.mathnet.ru/eng/isu/v17/i2/p138
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:272
    Full-text PDF :85
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024