Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2017, Volume 17, Issue 2, Pages 127–137
DOI: https://doi.org/10.18500/1816-9791-2017-17-2-127-137
(Mi isu710)
 

This article is cited in 2 scientific papers (total in 2 papers)

Scientific Part
Mathematics

To Chang theorem. II

S. Yu. Antonov, A. V. Antonova

Kazan State Power Engineering University, 51, Krasnosel'skaya str., Kazan, Russia, 420066
Full-text PDF (381 kB) Citations (2)
References:
Abstract: Multilinear polynomials $\mathcal{ H}^+(\bar x, \bar y \vert \bar w)$, $\mathcal{ H}^-(\bar x, \bar y \vert \bar w)\in F\{X\cup Y\}$, the sum of which is a polynomial $\mathcal{ H}(\bar x, \bar y \vert \bar w)$ Chang (where $F\{X\cup Y\}$ is a free associative algebra over an arbitrary field $F$ of characteristic not equal two, generated by a countable set $X\cup Y$) have been introduced in this paper. It has been proved that each of them is a consequence of the standard polynomial $S^-(\bar x)$. In particular it has been shown that the Capelli quasi-polynomials $b_{2m-1}(\bar x_m, \bar y)$ and $h_{2m-1}(\bar x_m, \bar y)$ are also consequences of the polynomial $S^-_m(\bar x)$. The minimal degree of the polynomials $b_{2m-1}(\bar x_m, \bar y)$, $h_{2m-1}(\bar x_m, \bar y)$ in which they are a polynomial identity of matrix algebra $M_n(F)$ has been also found in the paper. The obtained results are the translation of Chang results to some Capelli quasi-polynomials of odd degree.
Key words: $T$-ideal, standard polynomial, Capelli polynomial.
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: S. Yu. Antonov, A. V. Antonova, “To Chang theorem. II”, Izv. Saratov Univ. Math. Mech. Inform., 17:2 (2017), 127–137
Citation in format AMSBIB
\Bibitem{AntAnt17}
\by S.~Yu.~Antonov, A.~V.~Antonova
\paper To Chang theorem. II
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2017
\vol 17
\issue 2
\pages 127--137
\mathnet{http://mi.mathnet.ru/isu710}
\crossref{https://doi.org/10.18500/1816-9791-2017-17-2-127-137}
\elib{https://elibrary.ru/item.asp?id=29924692}
Linking options:
  • https://www.mathnet.ru/eng/isu710
  • https://www.mathnet.ru/eng/isu/v17/i2/p127
    Cycle of papers
    • To Chang theorem
      S. Yu. Antonov, A. V. Antonova
      Izv. Saratov Univ. Math. Mech. Inform., 2015, 15:3, 247–251
    • To Chang theorem. II
      S. Yu. Antonov, A. V. Antonova
      Izv. Saratov Univ. Math. Mech. Inform., 2017, 17:2, 127–137
    • To Chang theorem. III
      S. Yu. Antonov, A. V. Antonova
      Izv. Saratov Univ. Math. Mech. Inform., 2018, 18:2, 128–143
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :60
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024