Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, Volume 16, Issue 4, Pages 395–402
DOI: https://doi.org/10.18500/1816-9791-2016-16-4-395-402
(Mi isu688)
 

This article is cited in 10 scientific papers (total in 10 papers)

Scientific Part
Mathematics

Spectral analysis of a class of difference operators with growing potential

G. V. Garkavenkoa, N. B. Uskovab

a Voronezh State Pedagogical University, 86, Lenina str., 394043, Voronezh, Russia
b Voronezh State Technical University, 14, Moskovskiy Prospect str., 394026, Voronezh, Russia
References:
Abstract: The similar operator method is used for the spectral analysis of the closed difference operator of the form $ (\mathcal{A} x)(n) = x(n + 1) + x(n-1)-2x(n) + a (n)x(n), n \in \mathbb{Z} $ under consideration in the Hilbert space $ l_ {2} (\mathbb{Z}) $ of bilateral sequences of complex numbers, with a growing potential $ a: \mathbb{Z} \to \mathbb{C} $. The asymptotic estimates of eigenvalue, eigenvectors, spectral estimation of equiconvergence applications for the test operator and the operator of multiplication by a sequence $ a: \mathbb{Z} \to \mathbb{C} $. For the study of the operator, it is represented in the form of $ A-B $, where $ (Ax) (n) = a (n) x (n)$, $n \in \mathbb{Z}$, $x \in l_2 (\mathbb{Z}) $ with the natural domain. This operator is normal with known spectral properties and acts as the unperturbed operator in the method of similar operators. The bounded operator $ (Bx)(n)=-x(n+1)-x(n-1)+2x(n)$, $n \in \mathbb{Z}$, $x \in l_2(\mathbb{Z})$, acts as the perturbation.
Key words: similar operator method, spectrum, difference operator, spectral projections.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00197_а
This work was supported by the Russian Foundation for Basic Research (projects no. 16-01-00197).
Bibliographic databases:
Document Type: Article
UDC: 517.19
Language: Russian
Citation: G. V. Garkavenko, N. B. Uskova, “Spectral analysis of a class of difference operators with growing potential”, Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016), 395–402
Citation in format AMSBIB
\Bibitem{GarUsk16}
\by G.~V.~Garkavenko, N.~B.~Uskova
\paper Spectral analysis of a class of difference operators with growing potential
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2016
\vol 16
\issue 4
\pages 395--402
\mathnet{http://mi.mathnet.ru/isu688}
\crossref{https://doi.org/10.18500/1816-9791-2016-16-4-395-402}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3584324}
\elib{https://elibrary.ru/item.asp?id=27675052}
Linking options:
  • https://www.mathnet.ru/eng/isu688
  • https://www.mathnet.ru/eng/isu/v16/i4/p395
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024