Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, Volume 16, Issue 4, Pages 388–395
DOI: https://doi.org/10.18500/1816-9791-2016-16-4-388-395
(Mi isu687)
 

This article is cited in 6 scientific papers (total in 6 papers)

Scientific Part
Mathematics

The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product

R. M. Gadzhimirzaev

Dagestan Scientific Center RAS, 45, M. Gadzhieva str., 367032, Makhachkala, Russia
Full-text PDF (194 kB) Citations (6)
References:
Abstract: In this paper we consider the system of discrete functions $\left\{\varphi_{r,k}(x)\right\}_{k=0}^\infty,$ which is orthonormal with respect to the Sobolev-type inner product
\begin{equation*} \langle f,g \rangle=\sum_{\nu=0}^{r-1}\Delta^{\nu} f(-r)\Delta^{\nu} g(-r) + \sum_{t\in\Omega_r}\Delta^r f(t) \Delta^r g(t)\mu(t), \end{equation*}
where $\mu(t)=q^t(1-q)$, $0<q<1.$ It is shown that the shifted classical Meixner polynomials $\left\{M_k^{-r}(x+r)\right\}_{k=r}^\infty$ together with functions $\left\{{(x+r)^{[k]}\over k!}\right\}_{k=0}^{r-1}$ form a complete orthogonal system in the space $l_{2,\mu}(\Omega_r)$ with respect to the Sobolev-type inner product. It is shown that the Fourier series on Meixner polynomials $\left\{a_kM_k^{-r}(x+r)\right\}_{k=r}^\infty$ ($a_k$ — normalizing factors), orthonormal in terms of Sobolev, is a special case of mixed series on Meixner polynomials. Some new special series on Meixner orthogonal polynomials $M_k^\alpha(x)$ with $\alpha>-1$ are considered. In the case when $\alpha=r$ these special series coincide with mixed series on Meixner polynomials $M_k^0(x)$ and Fourier series on the system $\left\{a_kM_k^{-r}(x+r)\right\}_{k=r}^\infty$ orthonormal with respect to the Sobolev-type inner product.
Key words: Meixner polynomials, mixed series, special series, Sobolev-type inner product, Sobolev orthogonal polynomials.
Bibliographic databases:
Document Type: Article
UDC: 517.52
Language: Russian
Citation: R. M. Gadzhimirzaev, “The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product”, Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016), 388–395
Citation in format AMSBIB
\Bibitem{Gad16}
\by R.~M.~Gadzhimirzaev
\paper The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2016
\vol 16
\issue 4
\pages 388--395
\mathnet{http://mi.mathnet.ru/isu687}
\crossref{https://doi.org/10.18500/1816-9791-2016-16-4-388-395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3584323}
\elib{https://elibrary.ru/item.asp?id=27675051}
Linking options:
  • https://www.mathnet.ru/eng/isu687
  • https://www.mathnet.ru/eng/isu/v16/i4/p388
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024