Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, Volume 16, Issue 4, Pages 371–377
DOI: https://doi.org/10.18500/1816-9791-2016-16-4-371-377
(Mi isu685)
 

Scientific Part
Mathematics

On the $L^1$-convergence of series in multiplicative systems

N. Yu. Agafonova

Saratov State University, 83, Astrakhanskaya str., 410012, Saratov, Russia
References:
Abstract: In the paper two analogs of Garrett–Stanojević trigonometric results are established for multiplicative systems $\{\chi_n\}_{n=0}^\infty$ of bounded type. First, the modified partial sums of a series $\sum\limits^\infty_{k=0}a_k\chi_k$ with coefficients of bounded variation converge in $L^1[0,1)$ to its sum if and only if for all $\varepsilon>0$ there exists $\delta>0$ such that $\int^\delta_0\left|\sum\limits^\infty_{k=n}(a_k-a_{k+1})D_{k+1}(x)\right|\,dx<\varepsilon, \quad n\in\mathbb Z_+,$ where $D_{k+1}(x)=\sum\limits^k_{i=0}\chi_i(x)$. Secondly, if $\lim\limits_{n\to\infty}a_n\ln(n+1)=0$ and $\sum\limits^\infty_{k=n}|a_k-a_{k+1}|\leq Ca_n$, $n\in\mathbb Z_+$, then the series $\sum\limits^\infty_{n=0}a_n\chi_n(x)$ converges to its sum $f(x)$ in $L^1[0,1)$ if and only if $f\in L^1[0,1)$.
Key words: multiplicative systems, Fourier–Vilenkin series, multipliers, $L^1$-convergence.
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: N. Yu. Agafonova, “On the $L^1$-convergence of series in multiplicative systems”, Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016), 371–377
Citation in format AMSBIB
\Bibitem{Aga16}
\by N.~Yu.~Agafonova
\paper On the $L^1$-convergence of series in multiplicative systems
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2016
\vol 16
\issue 4
\pages 371--377
\mathnet{http://mi.mathnet.ru/isu685}
\crossref{https://doi.org/10.18500/1816-9791-2016-16-4-371-377}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3584321}
\elib{https://elibrary.ru/item.asp?id=27675048}
Linking options:
  • https://www.mathnet.ru/eng/isu685
  • https://www.mathnet.ru/eng/isu/v16/i4/p371
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024