Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2005, Volume 5, Issue 1-2, Pages 116–128 (Mi isu681)  

Computer science

Algebraic properties of recurrent neural networks of discrete time

I. I. Slepovichev

Saratov State University
References:
Abstract: Artificial neural networks сan be used effectively for а quite general class of problems. Still there exists nо formal foundation of some important constructions used in the theory. ln this paper an attempt is undertaken to formalize some concepts of neuroinformatics and consider their properties from the point of view of applied universal algebra. lt is proposed to treat neural networks as heterogeneous algebras which has made it possible to prove for them basic results similar to algebraic theorems оn homomorphisms and congruences.
Document Type: Article
UDC: 512.5
Language: Russian
Citation: I. I. Slepovichev, “Algebraic properties of recurrent neural networks of discrete time”, Izv. Saratov Univ. Math. Mech. Inform., 5:1-2 (2005), 116–128
Citation in format AMSBIB
\Bibitem{Sle05}
\by I.~I.~Slepovichev
\paper Algebraic properties of recurrent neural networks of discrete time
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2005
\vol 5
\issue 1-2
\pages 116--128
\mathnet{http://mi.mathnet.ru/isu681}
Linking options:
  • https://www.mathnet.ru/eng/isu681
  • https://www.mathnet.ru/eng/isu/v5/i1/p116
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :70
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024