Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2005, Volume 5, Issue 1-2, Pages 12–25 (Mi isu671)  

Mathematics

Siegеl disks and basins of attraction for families of analytic functions

P. A. Gumenuk

Saratov State University
References:
Abstract: Let $\mathcal{U}\ni 0$ be a hyperbolic domain, $\alpha\in \mathbb{R}\setminus\mathbb{Q}$, let $\Delta$ be a Stolz angle at $\lambda_0=e^{2\pi \alpha}$ with respect to the unit disk $\mathcal{D}$, and $\mathcal{W}$ a domain containing the point $\lambda_0$. Consider an analytic family $f: \mathcal{W}\times \mathcal{U}\to\mathbb{C}$; $(\lambda,z)\mapsto f_\lambda(z)$ consisting of analytic functions in the domain $\mathcal{U}$ with the following expansion $f_\lambda(z)=\lambda z+a_2(\lambda)z^2+\dots$, $\lambda\in \mathcal{W}$, for small $z$. Let $\mathcal{A}^*(0,f_\lambda,\mathcal{U})$ be the maximal domain $\mathcal{A}\subset\mathcal{U}$, such that $0\in \mathcal{A}$ and $f_\lambda(\mathcal{A})\subset \mathcal{A}$, or the set $\{0\}$ if there exist no such domains. We prove, that if a sequence $\{\lambda_n\in \mathcal{W}\cap\Delta\}_{n\in \mathbb{N}}$ converges to $\lambda_0$ and $\mathcal{S}=\mathcal{A}^*(0,f_{\lambda_n},\mathcal{U})\ne\{0\}$, then the sequence of the domains $\mathcal{A}^*(0,f_{\lambda_n},\mathcal{U})$ converges to $\mathcal{S}$ as to the kernel. An example shows, that the analogous statement for convergence with respect to the Hausdorff metric does not hold. In the case $\mathcal{S}\subset \mathcal{U}$ we obtain an asymptotic estimate for the size of the neighbourhood $\mathcal{V}=\mathcal{V}(K)$ of the point $\lambda_0$, such that a given compact $K\subset \mathcal{S}$ lies in $\mathcal{A}^*(0, f_\lambda, \mathcal{U})$ for all $\lambda\in \mathcal{V}\cap\Delta$.
Funding agency Grant number
Russian Foundation for Basic Research 04-01-00083_а
Программа «Университеты России» УР 04.01.374
Ministry of Education and Science of the Russian Federation НШ-1295.2003.1
Document Type: Article
UDC: 517.538.7
Language: Russian
Citation: P. A. Gumenuk, “Siegеl disks and basins of attraction for families of analytic functions”, Izv. Saratov Univ. Math. Mech. Inform., 5:1-2 (2005), 12–25
Citation in format AMSBIB
\Bibitem{Gum05}
\by P.~A.~Gumenuk
\paper Siegеl disks and basins of attraction for families of analytic functions
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2005
\vol 5
\issue 1-2
\pages 12--25
\mathnet{http://mi.mathnet.ru/isu671}
Linking options:
  • https://www.mathnet.ru/eng/isu671
  • https://www.mathnet.ru/eng/isu/v5/i1/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024