Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, Volume 16, Issue 3, Pages 322–330
DOI: https://doi.org/10.18500/1816-9791-2016-16-3-322-330
(Mi isu651)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

On convergence of Bernstein–Kantorovich operators sequence in variable exponent Lebesgue spaces

T. N. Shakh-Emirov

Daghestan Scientific Centre of RAS, 45, Gadgieva st., 367000, Makhachkala, Republic of Dagestan, Russia
Full-text PDF (200 kB) Citations (1)
References:
Abstract: Let $E=[0,1]$ and let a function $p(x)\ge1$ be measurable and essentially bounded on $E$. We denote by $L^{p(x)}(E)$ the set of measurable function $f$ on $E$ for which $\int_{E}|f(x)|^{p(x)}dx<\infty$. The convergence of a sequence of operators of Bernstein–Kantorovich $\{K_n(f,x)\}_{n=1}^\infty$ to the function $f$ in Lebesgue spaces with variable exponent $L^{p(x)}(E)$ is studied. The conditions on the variable exponent at which this sequence is uniformly bounded in these spaces are obtained and, as a corollary, it is shown that if $n\to\infty$ then $K_n(f,x)$ converges to function $f$ in the metric of space $L^{p(x)}(E)$ defined by the norm $\|f\|_{p(\cdot)}=\|f\|_{p(\cdot)}(E)=\inf\left\{\alpha>0:\quad\int\limits_E\left|\frac{f(x)}\alpha\right|^{p(x)}dx\le1\right\}$.
Key words: Lebesgue spaces with variable exponent, Bernstein–Kantorovich operators, Bernstein polynomials.
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: T. N. Shakh-Emirov, “On convergence of Bernstein–Kantorovich operators sequence in variable exponent Lebesgue spaces”, Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016), 322–330
Citation in format AMSBIB
\Bibitem{Sha16}
\by T.~N.~Shakh-Emirov
\paper On convergence of Bernstein--Kantorovich operators sequence in variable exponent Lebesgue spaces
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2016
\vol 16
\issue 3
\pages 322--330
\mathnet{http://mi.mathnet.ru/isu651}
\crossref{https://doi.org/10.18500/1816-9791-2016-16-3-322-330}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3557760}
\elib{https://elibrary.ru/item.asp?id=26702022}
Linking options:
  • https://www.mathnet.ru/eng/isu651
  • https://www.mathnet.ru/eng/isu/v16/i3/p322
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :104
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024