Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, Volume 16, Issue 3, Pages 310–321
DOI: https://doi.org/10.18500/1816-9791-2016-16-3-310-321
(Mi isu650)
 

This article is cited in 14 scientific papers (total in 14 papers)

Mathematics

Sobolev orthogonal polynomials generated by Meixner polynomials

I. I. Sharapudinovabc, Z. D. Gadzhievaab

a Dagestan Scientific Center RAS
b Dagestan State Pedagogical University, 45, M.Gadzhieva st., 367032, Makhachkala, Russia
c Vladikavkaz Scientific Center RAS
References:
Abstract: The problem of constructing Sobolev orthogonal polynomials $m _{r,n}^{\alpha}(x,q)$ $(n=0,1,\ldots)$, generated by classical Meixner's polynomials is considered. They can by defined using the following equalities $m_{r,k}^{\alpha}(x,q)={x^{[k]}\over k!}$, $x^{[k]}=x(x-1)\cdots(x-k+1)$, $k=0,1,\ldots,r-1$, $m_{r,k+r}^{\alpha}(x,q)=\frac{1}{(r-1)!}\sum\limits_{t=0}^{x-r}(x-1-t)^{[r-1]}m_{k}^{\alpha}(t,q)$, where $m_{k}^{\alpha}(t,q)$ denote Meixner's polynomial of degree $k$, orthonormal on $\Omega=\{0,1,\ldots\}$ with weight $\rho(x)=q^x\frac{\Gamma(x+\alpha+1)}{\Gamma(x+1)}(1-q)^{\alpha+1}$. Polynomials $m _{r,n}^{\alpha}(x,q)$, $(n=0,1,\ldots)$ are orthonormal on $\Omega=\{0,1,\ldots\}$ with respect to the inner product
$$ \langle m_{r,n}^{\alpha},m_{r,m}^{\alpha}\rangle= \sum\limits_{k=0}^{r-1}\Delta^km_{r,n}^{\alpha}(0,q)\Delta^km_{r,m}^{\alpha}(0,q)+ \sum\limits_{j=0}^{\infty}\Delta^rm_{r,n}^{\alpha}(j,q)\Delta^r m_{r,m}^{\alpha}(j,q)\rho(j). $$
For $m_{r,n}^{\alpha}(x,q)$ we obtain the explicit formula that contains the Мeixner polynomial $M_{n}^{\alpha-r}(x,q)$:
$$ m_{r,k+r}^{\alpha}(x,q)=\big(\frac{q}{q-1}\big)^r\left\{h_{k}^{\alpha}(q)\right\}^{-1/2} \left[M_{k+r}^{\alpha-r}(x,q)-\sum\limits_{\nu=0}^{r-1}\frac{A_{r,k,\nu}x^{[\nu]}}{\nu!}\right], k=0,1,\ldots, $$
where $A_{r,k,\nu}=\Big({q-1\over q}\Big)^\nu \frac{\Gamma(k+\alpha+1)}{(k+r-\nu)!\Gamma(\nu-r+\alpha+1)}$, $M_n^\alpha(x,q)=\frac{\Gamma (n+\alpha+1)}{n!} \sum_{k=0}^n{n^{[k]}x^{[k]}\over \Gamma (k+\alpha+1)k!}\left(1-{1\over q}\right)^k$, $h_n^\alpha(q)= {n+\alpha\choose n}q^{-n}\Gamma(\alpha+1)$.
Key words: orthogonal Sobolev polynomial, Meixner polynomials orthogonal on the grid, approximation of discrete functions, mixed series in Meixner polinomials orthogonal on a uniform grid.
Bibliographic databases:
Document Type: Article
UDC: 517.587
Language: Russian
Citation: I. I. Sharapudinov, Z. D. Gadzhieva, “Sobolev orthogonal polynomials generated by Meixner polynomials”, Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016), 310–321
Citation in format AMSBIB
\Bibitem{ShaGad16}
\by I.~I.~Sharapudinov, Z.~D.~Gadzhieva
\paper Sobolev orthogonal polynomials generated by Meixner polynomials
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2016
\vol 16
\issue 3
\pages 310--321
\mathnet{http://mi.mathnet.ru/isu650}
\crossref{https://doi.org/10.18500/1816-9791-2016-16-3-310-321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3557759}
\elib{https://elibrary.ru/item.asp?id=26702021}
Linking options:
  • https://www.mathnet.ru/eng/isu650
  • https://www.mathnet.ru/eng/isu/v16/i3/p310
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024