Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, Volume 16, Issue 3, Pages 281–288
DOI: https://doi.org/10.18500/1816-9791-2016-16-3-281-288
(Mi isu646)
 

Mathematics

On the solvability of the discrete analogue of the Minkowski–Alexandrov problem

V. A. Klyachin

Volgograd State University, 100, Universitetskii prospekt, 400062, Volgograd, Russia
References:
Abstract: The article deals with the multidimensional discrete analogue of the Minkowski problem in the production of A. D. Aleksandrov on the existence of a convex polyhedron with given curvatures at the vertices. We find the conditions for the solvability of this problem in a general setting, when the curvature measure at the polyhedron vertices is defined by an arbitrary continuous function defined on a field $F: \mathbb S^{n-1}\to (0,+\infty)$. The basis for solving the problem is the solvability of the problem whether each triangulation of a finite set of points $ P \subset \mathbb S^{n-1} $ of the unit sphere corresponds a convex polyhedron whose faces normal belong to the set $ P $.
Key words: convex polyhedron, triangulation, spherical simplex.
Funding agency Grant number
Russian Foundation for Basic Research 15-41-02517_р_поволжье_а
This work was supported by the Russian Foundation for Basic Research (project no. 15-41-02517).
Bibliographic databases:
Document Type: Article
UDC: 514.17
Language: Russian
Citation: V. A. Klyachin, “On the solvability of the discrete analogue of the Minkowski–Alexandrov problem”, Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016), 281–288
Citation in format AMSBIB
\Bibitem{Kly16}
\by V.~A.~Klyachin
\paper On the solvability of the discrete analogue of the Minkowski--Alexandrov problem
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2016
\vol 16
\issue 3
\pages 281--288
\mathnet{http://mi.mathnet.ru/isu646}
\crossref{https://doi.org/10.18500/1816-9791-2016-16-3-281-288}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3557755}
\elib{https://elibrary.ru/item.asp?id=26702017}
Linking options:
  • https://www.mathnet.ru/eng/isu646
  • https://www.mathnet.ru/eng/isu/v16/i3/p281
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024