Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, Volume 16, Issue 3, Pages 263–272
DOI: https://doi.org/10.18500/1816-9791-2016-16-3-263-272
(Mi isu644)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mathematics

Admissible hypercomplex structures on distributions of Sasakian manifolds

S. V. Galaev

Saratov State University, 83, Astrakhanskaya st., 410012, Saratov, Russia
Full-text PDF (228 kB) Citations (5)
References:
Abstract: The notions of admissible (almost) hypercomplex structure and almost contact hyper-Kählerian structure are introduced. On a manifold $M$ with an almost contact metric structure $(M,\vec\xi,\eta,\varphi,D)$ an interior symmetric connection $\nabla$ is defined. In the case of a contact manifold of dimension bigger than or equal to five, it is proved that the curvature tensor of the connection $\nabla$ is zero if and only if there exist adapted coordinate charts with respect to that the coefficients of the interior connection are zero. On the distribution $D$ of an almost contact structure as on the total space of the vector bundle $(D,\pi,M)$, an admissible almost hypercomplex structure $(\tilde D,J,J_1,J_2,\vec u,\lambda=\eta\circ\pi_*,D)$ is defined. Under the condition that the admissible almost complex structure $\varphi$ is integrable, it is proved that the constructed almost hypercomplex structure is integrable if and only if the distribution $D$ is a distribution of zero curvature. In the case of a Sasakian structure $(M,\vec\xi,\eta,\varphi,g,D)$, the conditions that imply that the admissible hypercomplex structure $(\tilde D,J,J_1,J_2,\vec u,\lambda=\eta\circ\pi_*,\tilde g,D)$ is an almost contact hyper-Kählerian structure.
Key words: almost contact metric structure, admissible hypercomplex structure, almost contact hyper-Kählerian structure, distribution of zero curvature.
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: S. V. Galaev, “Admissible hypercomplex structures on distributions of Sasakian manifolds”, Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016), 263–272
Citation in format AMSBIB
\Bibitem{Gal16}
\by S.~V.~Galaev
\paper Admissible hypercomplex structures on distributions of Sasakian manifolds
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2016
\vol 16
\issue 3
\pages 263--272
\mathnet{http://mi.mathnet.ru/isu644}
\crossref{https://doi.org/10.18500/1816-9791-2016-16-3-263-272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3557753}
\elib{https://elibrary.ru/item.asp?id=26702015}
Linking options:
  • https://www.mathnet.ru/eng/isu644
  • https://www.mathnet.ru/eng/isu/v16/i3/p263
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :84
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024