|
This article is cited in 3 scientific papers (total in 3 papers)
Mathematics
Orthogonal shift systems in the field of $p$-adic numbers
A. M. Vodolazov, S. F. Lukomskii Saratov State University, 83, Astrakhanskaya st., 410012, Saratov, Russia
Abstract:
In 2010 S. Albeverio, S. Evdokimov and M. Skopina proved that if the shift system $(\varphi(x\dot-h))$ of a step function $\varphi$ is orthonormal and $\varphi$ generates $p$-adic MRA then its Fourier transform lies in the unit ball. We prove then in some cases the condition "$\varphi$ generates MRA" is possible to be omitted. In general, we indicate the number of linearly independent step-functions, which shifts form an orthonormal system.
Key words:
orthogonal shift systems, field of $p$-adic numbers, $p$-adic MRA.
Citation:
A. M. Vodolazov, S. F. Lukomskii, “Orthogonal shift systems in the field of $p$-adic numbers”, Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016), 256–262
Linking options:
https://www.mathnet.ru/eng/isu643 https://www.mathnet.ru/eng/isu/v16/i3/p256
|
Statistics & downloads: |
Abstract page: | 308 | Full-text PDF : | 100 | References: | 40 |
|