Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, Volume 16, Issue 2, Pages 198–207
DOI: https://doi.org/10.18500/1816-9791-2016-16-2-198-207
(Mi isu637)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mechanics

Solving kinematic problem of optimal nonlinear stabilization of arbitrary program movement of free rigid body

Yu. N. Chelnokovab, E. I. Nelaevab

a Institute of Precision Mechanics and Control, Russian Academy of Sciences, 24, Rabochaya st., 410028, Saratov, Russia
b Saratov State University, 83, Astrakhanskaya st., 410012, Saratov, Russia
Full-text PDF (315 kB) Citations (2)
References:
Abstract: The kinematic problem of nonlinear stabilization of arbitrary program motion of free rigid body is studied. Biquaternion kinematic equation of perturbed motion of a free rigid body is considered as a mathematical model of motion. Instant speed screw of body motion is considered as a control. There are two functionals that are to be minimized. Both of them characterize the integral quantity of energy costs of control and squared deviations of motion parameters of a free rigid body from their program values. Optimal control laws and differential equations of optimization problem are determined using the Pontryagin's maximum principle. Analytical solution of this problem has been found. The control law obtained is used for numerical solution of the inverse kinematics of a Stanford robot arm. The analysis of the numerical solution is carried out.
Key words: optimal control, rigid body, biquaternion, inverse kinematics.
Bibliographic databases:
Document Type: Article
UDC: 531.38
Language: Russian
Citation: Yu. N. Chelnokov, E. I. Nelaeva, “Solving kinematic problem of optimal nonlinear stabilization of arbitrary program movement of free rigid body”, Izv. Saratov Univ. Math. Mech. Inform., 16:2 (2016), 198–207
Citation in format AMSBIB
\Bibitem{CheNel16}
\by Yu.~N.~Chelnokov, E.~I.~Nelaeva
\paper Solving kinematic problem of optimal nonlinear stabilization of arbitrary program movement of free rigid body
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2016
\vol 16
\issue 2
\pages 198--207
\mathnet{http://mi.mathnet.ru/isu637}
\crossref{https://doi.org/10.18500/1816-9791-2016-16-2-198-207}
\elib{https://elibrary.ru/item.asp?id=26254383}
Linking options:
  • https://www.mathnet.ru/eng/isu637
  • https://www.mathnet.ru/eng/isu/v16/i2/p198
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :129
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024