Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, Volume 16, Issue 1, Pages 80–95
DOI: https://doi.org/10.18500/1816-9791-2016-16-1-80-95
(Mi isu623)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mechanics

An investigation of algorithms for estimating the inertial orientation of a moving object

Yu. N. Chelnokovab, S. E. Perelyaev, L. A. Chelnokovab

a Saratov State University, 83, Astrakhanskaya st., Saratov, Russia, 410012
b RAS Institute of Precision Mechanics and Control, 24, Rabochaya st., Saratov, Russia, 410028
Full-text PDF (305 kB) Citations (5)
References:
Abstract: The new and known strapdown INS algorithms for high-precision estimation of the orientation parameters of a moving object (Rodrigues–Hamilton (Euler) parameters) in the inertial frame are investigated. The new algorithms are based upon using the classical Hamilton rotation quaternion, quaternion with zero scalar part, which is correlated to the classical rotation quaternion via the quaternion equivalent of Cayley formula, and also the new quaternion differential equation for the inertial orientation of a moving object. The new algorithms are developed using the Picard successive approximation method. These algorithms use the integral raw information about absolute angular motion of an object as input data. It is demonstrated that the new algorithms are superior to the known algorithms of the same order regarding accuracy and complexity.
Key words: moving object, Rodrigues–Hamilton (Euler) parameters, inertial orientation, Hamilton quaternion, quaternion matrix, Cayley formula, four-dimensional skew-symmetric operator.
Bibliographic databases:
Document Type: Article
UDC: 531 (075.8); 629.7.05(075)
Language: Russian
Citation: Yu. N. Chelnokov, S. E. Perelyaev, L. A. Chelnokova, “An investigation of algorithms for estimating the inertial orientation of a moving object”, Izv. Saratov Univ. Math. Mech. Inform., 16:1 (2016), 80–95
Citation in format AMSBIB
\Bibitem{ChePerChe16}
\by Yu.~N.~Chelnokov, S.~E.~Perelyaev, L.~A.~Chelnokova
\paper An investigation of algorithms for estimating the inertial orientation of a moving object
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2016
\vol 16
\issue 1
\pages 80--95
\mathnet{http://mi.mathnet.ru/isu623}
\crossref{https://doi.org/10.18500/1816-9791-2016-16-1-80-95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3501506}
\elib{https://elibrary.ru/item.asp?id=25897439}
Linking options:
  • https://www.mathnet.ru/eng/isu623
  • https://www.mathnet.ru/eng/isu/v16/i1/p80
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:348
    Full-text PDF :164
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024