Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, Volume 16, Issue 1, Pages 29–33
DOI: https://doi.org/10.18500/1816-9791-2016-16-1-29-33
(Mi isu618)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

About new approach to solution of Riemann's boundary value problem with condition on the half-line in case of infinite index

R. B. Salimov

Kazan State University of Architecture and Engineering, 1, Zelenaya st., Kazan, Russia, 420043
Full-text PDF (135 kB) Citations (1)
References:
Abstract: To solve a homogeneous Riemann boundary value problem with infinite index and condition on the half-line we propose a new approach based on the reduction of the considered problem to the corresponding task with the condition on the real axis and finite index. It is required to define a function $\Phi(z)$, analytic and bounded in the complex plane $z$, cut down on positive real semi-axis $L^+$, if the edge condition $\Phi^{+}(t)=G(t) \Phi^{-}(t)$, $t\in L^{+}$ is fulfilled, where $\Phi^{+}(t)$, $\Phi^{-}(t)$ are limit values of the function $\Phi(z)$, as $z\to t$ correspondingly on the left and on the right, $G(t)$ is a given function, for which argument $\arg G(t)=\nu^{-}t^{\rho}+\nu(t)$, $t\in L^{+}$ holds, here $\nu^{-}$, $\rho$ are given numbers, $\nu^{-}>0$, $\frac{1}{2}<\rho<1$, and $\ln|G(t)|$, $\nu(t)$ are functions which satisfy the Holder condition. It is admitted that $G(t)=1$ at $t\in(-\infty,0)$. The functions $E^{+}(z)=e^{(\alpha+i\beta)z^{\rho}}$, $0\le \arg z \le \pi$, $E^{-}(z)=e^{(\alpha-i\beta)z^{\rho}}$, $-\pi\le \arg z \le 0$ are used to avoid infinite gap of the $\arg G(t)$, by the selection of real numbers $\alpha$, $\beta$.
Key words: Riemann boundary value problem, analytic functions, infinite index.
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: R. B. Salimov, “About new approach to solution of Riemann's boundary value problem with condition on the half-line in case of infinite index”, Izv. Saratov Univ. Math. Mech. Inform., 16:1 (2016), 29–33
Citation in format AMSBIB
\Bibitem{Sal16}
\by R.~B.~Salimov
\paper About new approach to solution of Riemann's boundary value problem with condition on the half-line in case of infinite index
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2016
\vol 16
\issue 1
\pages 29--33
\mathnet{http://mi.mathnet.ru/isu618}
\crossref{https://doi.org/10.18500/1816-9791-2016-16-1-29-33}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3501501}
\elib{https://elibrary.ru/item.asp?id=25897434}
Linking options:
  • https://www.mathnet.ru/eng/isu618
  • https://www.mathnet.ru/eng/isu/v16/i1/p29
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024