Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2015, Volume 15, Issue 3, Pages 300–309
DOI: https://doi.org/10.18500/1816-9791-2015-15-3-300-309
(Mi isu596)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Approximation of functions of bounded $p$-variation by Euler means

A. A. Tyuleneva

Saratov State University, 83, Astrakhanskaya st., 410012, Saratov, Russia
Full-text PDF (216 kB) Citations (2)
References:
Abstract: In this paper we study the Euler means
$$e^q_n(f)(x)=\sum^n_{k=0}\binom{n}{k}q^{n-k}(1+q)^{-n}S_k(f)(x), \qquad q\geq 0, \qquad n\in\mathbb Z_+,$$
where $S_k(f)$ is the $k$-th partial trigonometric Fourier sum. For $p$-absolutely continuous functions ($f\in C_p$, $1<p<\infty$) we consider their approximation by the Euler means in uniform and $C_p$-metric in terms of moduli of continuity $\omega_k(f)_{C_p}$, $k\in\mathbb N$, and the best approximations by trigonometric polynomials $E_n(f)_{C_p}$. One can note the following inequality for different metrics from Theorem 2:
$$\|f-e^q_n(f)\|_\infty\leq C_1(1+q)^{-n} \sum_{j=0}^n\binom{n}{j} q^{n-j}E_j(f)_{C_p}, \quad n\in\mathbb N, $$
which is sharp. Also the following generalization of a result due to C. K. Chui and A. S. Holland is proved.
If $\omega$ is a modulus of continuity on $[0,\pi]$ such that $\delta\int^\pi_\delta t^{-2}\omega(t)\,dt=O(\omega(\delta))$, $1<p<\infty$ and $f\in C_p$ satisfies two properties 1) $\omega_2(f,t)_{C_p}\leq C\omega(t)$; 2) $\int_{2\pi/(n+1)}^\pi t^{-1}\|\varphi_x(t)-\varphi_x(t+2\pi/(n+1) \|_{C_p}\,dt=O(\omega(1/n))$, where $\varphi_x(t)=f(x+t)+f(x-t)-2f(x)$, then $\|e^1_n(f)-f\|_{C_p}\leq C\omega(1/n)$, $n\in\mathbb N$. Some applications to the approximation in Hölder type metrics are given.
Key words: functions of bounded $p$-variation, $p$-absolutely continuous functions, Euler means, best approximation, modulus of continuity.
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: A. A. Tyuleneva, “Approximation of functions of bounded $p$-variation by Euler means”, Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015), 300–309
Citation in format AMSBIB
\Bibitem{Tyu15}
\by A.~A.~Tyuleneva
\paper Approximation of functions of bounded $p$-variation by Euler means
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2015
\vol 15
\issue 3
\pages 300--309
\mathnet{http://mi.mathnet.ru/isu596}
\crossref{https://doi.org/10.18500/1816-9791-2015-15-3-300-309}
\elib{https://elibrary.ru/item.asp?id=24235223}
Linking options:
  • https://www.mathnet.ru/eng/isu596
  • https://www.mathnet.ru/eng/isu/v15/i3/p300
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024