Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2015, Volume 15, Issue 2, Pages 171–179
DOI: https://doi.org/0.18500/1816-9791-2015-15-2-171-179
(Mi isu579)
 

Mathematics

An estimate from above of the number of invariant straight lines of $n$-th degree polynomial vector field

V. B. Tlyachev, A. D. Ushkho, D. S. Ushkho

Adyghe State University, 208, Pervomayskaya st., 385000, Maykop, Russia
References:
Abstract: It is shown that the $n$-th degree polynomial vector field in the plane has at most $2n + 1$ ($2n + 2$) invariant straight lines when $n$ is even (odd) and $n\geq 3$ if it has a singular point for which $n + 1$ invariant straight lines and $n$ parallel invariant straight lines with a certain angular coefficient are incident.
Key words: polynomial vector field, invariant straight line, singular point, isocline.
Bibliographic databases:
Document Type: Article
UDC: 517.917
Language: Russian
Citation: V. B. Tlyachev, A. D. Ushkho, D. S. Ushkho, “An estimate from above of the number of invariant straight lines of $n$-th degree polynomial vector field”, Izv. Saratov Univ. Math. Mech. Inform., 15:2 (2015), 171–179
Citation in format AMSBIB
\Bibitem{TlyUshUsh15}
\by V.~B.~Tlyachev, A.~D.~Ushkho, D.~S.~Ushkho
\paper An estimate from above of the number of invariant straight lines of $n$-th degree polynomial vector field
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2015
\vol 15
\issue 2
\pages 171--179
\mathnet{http://mi.mathnet.ru/isu579}
\crossref{https://doi.org/0.18500/1816-9791-2015-15-2-171-179}
\elib{https://elibrary.ru/item.asp?id=23647134}
Linking options:
  • https://www.mathnet.ru/eng/isu579
  • https://www.mathnet.ru/eng/isu/v15/i2/p171
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:214
    Full-text PDF :127
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024